Ministry of Higher Education and Scientific Research

Salahaddin University-Erbil

College of Education

Department of Physics

1st Stage

Laboratory of Electricity and Magnetism

Group ()

Full Name:

Experiment Number: (3)

Name of Experiment: A Simple Graphical Method for Determining the Internal Resistance of a Voltmeter

- 1. Assist. Prof. Dr. Sardar PeerKHdir
- 2. Dr. Kasim Fawzy Ahmed
- 3. Mrs. Avan Haydar Farhan

Experiment No (3)

A Simple Graphical Method for Determining the Internal Resistance of a Voltmeter

Aim of experiment:

Calculate the internal resistance of a voltmeter by using a simple graphical method.

Theory:

Let E represents the total e.m.f. of the circuit, R represents the resistance box, V represents the voltmeter reading and R_V is the resistance of the voltmeter.

$$E = IR + IR_V = I(R + R_V)$$

Then the current I in the circuit is

$$I = \frac{E}{R + R_V}$$

Assuming that the resistance of the accumulators in the circuit to be negligible. Hence, the voltage across the voltmeter is

$$V = IR_V = \frac{E R_V}{R + R_V}$$

Rearranging,

$$R + R_V = \frac{E R_V}{V} \rightarrow R = E R_V \frac{1}{V} - R_V$$

Thus, from the graph of R (ordinates) against 1/V represent a straight line which negative intercept on the R axis is represent the value of R_V as shown in figure 1.

Figure 1: Graph between R and 1/V to find Voltmeter Resistance (R_{ν}) .

Apparatus:

- 1. DC power supply 3. Resistors box which its total resistance is not less than 1,000,000 Ω (R).
- 2. Set of wires. 4. Analog Voltmeter its scale 1, 3 or 10.

Experimental Method:

- 1. **Connect** down the circuit as shown in the figure 2. Take out a large resistance from the resistance box (R=0 to 1,000,000 Ω), choose a scale for the Voltmeter (let it be 10), and put the value of the resistance box on 0 Ω and increase the voltage of the power supply till you get a full scale (V=10Volt)
- 2. Step by step, increase *R* and record the resistance *R* with the reading of the voltmeter scale *V*. tabulate the values in the table.

$R\left(\Omega ight)$	$V\left(V\right)$	1/V (V ⁻¹)
0		
100,000		
200,000		

- 3. Plot a graph between the value of (R) at Y-axis and corresponding values of (1/V) on X-axis.
- 4. Calculate the slope $[Slope = \frac{\Delta R}{1/\Delta V}]$ of the straight line represents the value of the $[Slope = ER_V]$. Calculate the resistance of the voltmeter R_V by negative intercept on the R axis (Figure 1).
- 5. Compute the percent error between the measured and calculated value. Record this on the worksheet.

The percentage change in an internal resistance (R_v) as:

$$R_{v} = \frac{\left| R_{v_{Theoretic}} - R_{v_{Experiment}} \right|}{R_{v_{Theoretic}}} \times 100 \%$$

The percentage change in electromagnetic force E as:

$$E = \frac{\left|E_{Theoretic} - E_{Experiment}\right|}{E_{Theoretic}} \times 100 \%$$

Figure 2: Circuit diagram for determining a voltmeter internal resistance

Data and Calculate:

Table 1:

$R\left(\boldsymbol{k}\Omega\right)$	V (Volt)	$\frac{1}{V} (Volt^{-1})$
$R_v(Theoretic)$: (By using ohmmeter)	$R_v = \dots$	
R _{experiment} : (By using graph)	$R_v = \dots$	
$\varepsilon_{R_v}(Error_{R_v}) =$	$= \frac{\left R_{th} - R_{exp}\right }{R_{th}} \times 100\%$ $= \frac{\left \frac{1}{R_{th}} \right }{100\%} \times 100\%$	
	=	

E(theoretic): (By using voltmeter)	$E = \dots$
R _{experiment} : (By using slope)	$E = \dots$
	$= \frac{ E_{th} - E_{exp} }{E_{th}} \times 100\%$
$\varepsilon_{R_v}(Error_{R_v}) =$	=

Graph 1:

$$Slope = \frac{\Delta R}{1/\Delta V}$$

Slope = ———

Slope =

 $R_v =$

 $ER_v = Slope$

$$E = \frac{Slope}{R_v} =$$

Some questions:

- 1) Define a Voltmeter?
- 2) What is meant by an ideal Voltmeter?
- 3) Why the internal resistance of a voltmeter should be very high?
- 4) Voltmeter calibration can be done with a potentiometer, why?
- 5) How a galvanometer can be converted into a voltmeter?

Result and Discussion:	
	• • • • • • • • •
	• • • • • • • • •
	• • • • • • • • •
	• • • • • • • • •
	• • • • • • • • •

• • • • • • • • •				 					
• • • • • • • • •	• • • • • • • • • • •			 			• • • • • • • • • • •		
• • • • • • • • •	• • • • • • • • • •		• • • • • • • • • • •	 					
• • • • • • • • •				 					
• • • • • • • • •	• • • • • • • • • •		• • • • • • • • • •	 	• • • • • • • • • •				• • • •
• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	 			• • • • • • • • • •		
• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • •		 					
• • • • • • • • •	• • • • • • • • • •			 					
	• • • • • • • • • •			 					
				 					• • • • •
				 		• • • • • • • • •			• • • • •
				 					• • • • •
				 					• • • • •
				 					• • • • •
		• • • • • • • • • • • • • • • • • • • •		 				• • • • • • • • • •	