Double Integral

Suppose that f(x,y) defined on a closed rectangle

$$R = [a, b] \times [c, d] = \{(x, y) \in \mathbb{R}^2 \mid a \le x \le b, \ c \le y \le d\}$$

and we first suppose $\mathsf{t}^{f(x,y) \geq 0}$. The graph of f is a surface with

 Our goal is to find the volume of S. To find the volume of the solid under the surface, we can perform a Riemann sum of the volume S_i of parallelepipeds with base

 $R_i = \Delta x \times \Delta y$ and height $f(x_i, y_i)$:

A Geometric Interpretation of the Double Integral

A Geometric Interpretation of the Double Integral

The limit of the Riemann sum obtained when Δx and Δy go to zero is the value of the double integral of f(x, y) over the region R and is denoted by

The double integral represent the volume above the region R and the upder the surface f(x,y).