Double Integral

Suppose that $f(x, y)$ defined on a closed rectangle

$$
R=[a, b] \times[c, d]=\left\{(x, y) \in \mathbb{R}^{2} \mid a \leqslant x \leqslant b, c \leqslant y \leqslant d\right\}
$$

and we first suppose tha $f(x, y) \geqslant 0$. The graph of f is a surface with equation $z=f(x, y)$. Let S be the solid that lies above R and under the graph of f, that is $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 0 \leqslant z \leqslant f(x, y),(x, y) \in R\right\}$

- Our goal is to find the volume of S . To find the volume of the solid under the surface, we can perform a Riemann sum of the volume S_{i} of parallelepipeds with base $R_{i}=\Delta x \times \Delta y$ and height $f\left(x_{i}, y_{i}\right):$

A Geometric Interpretation of the Double Integral

A Geometric Interpretation of the Double Integral

$>$ The limit of the Riemann sum obtained when Δx and Δy go to zero is the value of the double integral of $f(x, y)$ over the region R and is denoted by

$$
\iint_{R} f(x, y) d A=\lim _{\substack{\Delta x_{i} \rightarrow 0 \\ \Delta y_{i} \rightarrow 0}} \sum_{i=1}^{n} f\left(x_{i}, y_{i}\right) R_{i}
$$

$>$ If $f(x, y)=1$ then the double integral represents the area means that $A=\iint_{R} d A$

