Double Integral Suppose that f(x,y) defined on a closed rectangle $$R = [a, b] \times [c, d] = \{(x, y) \in \mathbb{R}^2 \mid a \le x \le b, \ c \le y \le d\}$$ and we first suppose that $f(x, y) \ge 0$. The graph of f is a surface with equation z=f(x,y). Let S be the solid that lies above R and under the graph of f, that is $S = \{(x,y,z) \in \mathbb{R}^3 \mid 0 \le z \le f(x,y), (x,y) \in R\}$ • Our goal is to find the volume of S. To find the volume of the solid under the surface, we can perform a Riemann sum of the volume S_i of parallelepipeds with base $R_i = \Delta x \times \Delta y$ and height $f(x_i, y_i)$: ## A Geometric Interpretation of the Double Integral ## A Geometric Interpretation of the Double Integral The limit of the Riemann sum obtained when Δx and Δy go to zero is the value of the double integral of f(x, y) over the region R and is denoted by - The double integral represent the volume above the region R and the under the surface f(x,y). - If f(x,y)=1 then the double integral represents the area means that $A = \iint dA$