Vector Analysis- Aweenseyed abdollah

Vectors

- * A vector in the plane is a directed line segment.
- * The directed line segment PQ has initial point P and terminal point Q.
- ightharpoonup length of the vector \overrightarrow{PQ} is denoted by $|\overrightarrow{PQ}|$

Initial point

- $\triangleright V_1, V_2, V_3$ are called the components of V
- A vector $\overrightarrow{\mathbf{v}} = \langle v_1, v_2, v_3 \rangle$ can be represented by an arrow from any point $P(x_1, y_1, z_1)$ to the point $Q(v_{1+}x_1, v_{2+}y_1, v_{3+}z_1)$ in \mathbb{R}^3 .

> If P is the origin O, V is called the position vector of the point O.

Standard Position Vector

Given the points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$, the standard position vector $\overrightarrow{\mathbf{V}}$ equal to \overrightarrow{PQ} is $\mathbf{V} = \langle v_1, v_2, v_3 \rangle$ $= \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle^{\text{oct}}_{\text{Analysis}}$

ector Analysis- Aweenseyed abdollah

Example:

Write the component form of the vector PQ where P(-3,4,1) and Q(-5,2,2).

Solution: The standard position vector v representing has components

$$V = \langle v_1, v_2, v_3 \rangle = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$$
$$= \langle -5 - (-3), 2 - 4, 2 - 1 \rangle = \langle -2, -2, 1 \rangle$$

Vector Analysis- Aweenseyed abdollah

Vector Analysis- Aweenseyed abdollah

Length Of The Three-dimensional Vector

The length of the vector $\mathbf{v} = \overrightarrow{PQ}$ is the nonnegative number

$$|\mathbf{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

*The length of the vector is sometimes called its magnitude or the norm of v and denoted by the symbol |v| or ||v||.

Example:

Find the length of the vector with initial point P(-3,4,1) and terminal point Q(-5,2,2).

Solution: the component form of \overrightarrow{PQ} is $v = \langle -2, -2, 1 \rangle$ so the length of $v = \overrightarrow{PQ}$ is

$$|\mathbf{v}| = \sqrt{(-2)^2 + (-2)^2 + (1)^2} = \sqrt{9} = 3$$

*Two vectors are equal if they have the same length and direction. SO, $\overrightarrow{PQ} \neq \overrightarrow{QP}$

algebraically if
$$v_1 = \langle x_1, y_1, z_1 \rangle$$
 and $v_2 = \langle x_2, y_2, z_2 \rangle$, then $v_1 = v_2$ if and only if $x_1 = x_2$, $y_1 = y_2$ and $z_1 = z_2$

Note: moving a vector does not change it. A vector is only defined by its magnitude and direction, not starting location.

Vector Addition And Scalar Multiplication

Let $u = \langle u_1, u_2, u_3 \rangle$ and $v = \langle v_1, v_2, v_3 \rangle$ be vectors with k a scalar.

Addition: $u + v = \langle u_1 + v_1, u_2 + v_2, u_3 + v_3 \rangle$

Difference: u-v= $\langle u_1 - v_1, u_2 - v_2, u_3 - v_3 \rangle$

Scalar multiplication: $ku = \langle ku_1, ku_2, ku_3 \rangle$

There are two basic ways to add vectors: 1-Tip to tail method 2-Parallelogram method

Example:

Let
$$u = \langle -1,3,1 \rangle$$
 and $v = \langle 4,7,0 \rangle$. find

a. 2u+3v

b. u-v

 $\mathbf{c.} \ \left| \frac{1}{2} u \right|$

Solution: a.
$$2u+3v=2\langle -1,3,1\rangle +3\langle 4,7,0\rangle = \langle -2,6,2\rangle +\langle 12,21,0\rangle =\langle 10,27,2\rangle$$
 b. $u-v=\langle -1,3,1\rangle -\langle 4,7,0\rangle =\langle -1-4,3-7,1-0\rangle =\langle -5,-4,1\rangle$

b. u-v =
$$\langle -1,3,1 \rangle - \langle 4,7,0 \rangle = \langle -1-4,3-7,1-0 \rangle = \langle -5,-4,1 \rangle$$

$$\mathbf{c.} \ \left| \frac{1}{2} u \right| = \left| \left\langle \frac{-1}{2}, \frac{3}{2}, \frac{1}{2} \right\rangle \right| = \sqrt{\left(\frac{-1}{2}\right)^2 + \left(\frac{3}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \frac{1}{2} \sqrt{11}$$

Vector Analysis- Aweenseyed abdollah

Proposition (Properties of Vector Operations)

Let u,v,w be vectors and *a,b* be scalars.

1.
$$u+v=v+u$$

2.
$$(u+v)+w = u+(v+w)$$

3.
$$u+0=u$$

4.
$$u+(-u)=0$$

5.
$$0u=0$$

7.
$$a(b\mathbf{u})=(ab)\mathbf{u}$$

8.
$$a(u+v)=au+av$$

9.
$$(a+b)u=au+bu$$

11.
$$|a\mathbf{v}| = |a||\mathbf{v}|$$

Linear Combinations

A vector r, is said to be a linear combination of the vectors a, b, c, ... ect. If there exist scalars x, y, z, ... ect. Such that

$$r = xa + yb + zc + \cdots$$

Example:

The vectors

$$2a + b - 4c$$
, $a + 2b - 3c$

are linear combinations of the vectors a, b, c.

Unit Vectors

A vector v of length 1 is called a unit vector.

The standard unit vectors (standard basis vectors) are

Any vector $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ can be written as a linear combination of the standard unit vectors as follows:

$$\mathbf{v} = \langle v_1, v_2, v_3 \rangle = \langle v_1, 0, 0 \rangle + \langle 0, v_2, 0 \rangle + \langle 0, 0, v_3 \rangle$$

$$= v_1 \langle 1, 0, 0 \rangle + v_2 \langle 0, 1, 0 \rangle + v_3 \langle 0, 0, 1 \rangle$$

$$= v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}.$$

- *We call the scalar (or number) v_1 the i-component of the vector v_2 the j-component, and v_3 the k-component.
- \bullet In component form, the vector from $P_1(x_1,y_1,z_1)$ to $P_2(x_2,y_2,z_2)$ is

$$\overrightarrow{P_1P_2} = (x_2 - x_1)\mathbf{i} + (y_2 - y_1)\mathbf{j} + (z_2 - z_1)\mathbf{k}$$