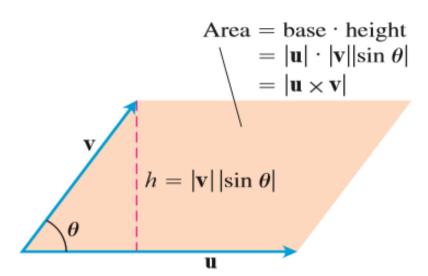
Geometric Properties Of The Cross Product

Let u and v be nonzero vectors in space then:

- 1. The vector $\mathbf{u} \times \mathbf{v}$ is orthogonal to both u and v.
- 2. $\mathbf{u} \times \mathbf{v} = \mathbf{0}$ if and only if u and v are scalar multiples of each other (u and v are parallel).
- 3. $|\mathbf{u} \times \mathbf{v}| =$ area of the parallelogram determined by u and v.



Proposition (Properties Of The Cross Product)

If u, v, and w are any vectors and r, s are scalars, then

- 1. $\mathbf{v} \times \mathbf{u} = -(\mathbf{u} \times \mathbf{v})$
- 2. $(ru) \times (sv) = rs(u \times v)$
- 3. $(ru) \times v = r(u \times v) = u \times (rv)$
- 4. $u \times (v + w) = u \times v + u \times w$
- 5. $(v+w) \times u = v \times u + w \times u$
- 6. $u.(v \times w) = (u \times v).w$
- 7. $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} (\mathbf{u} \cdot \mathbf{v})\mathbf{w}$

8. $0 \times u = 0$

- 1. Find a vector perpendicular to the plane of P(1,-1,0), Q(2,1,-1), and R(-1,1,2)
- 2. Find the area of the triangle with vertices P(1,-1,0), Q(2,1,-1), and R(-1,1,2).
- 3. If $\vec{a} = \langle 2, 1, -1 \rangle$ and $\vec{b} = \langle -3, 4, 1 \rangle$ compute each of the following. a) $\vec{a} \times \vec{b}$ b) $\vec{b} \times \vec{a}$

Note :

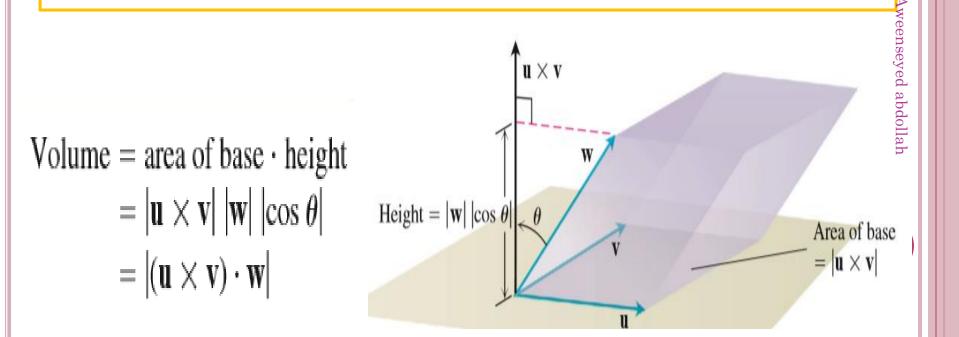
- 1. The dot product of two vectors is a scalar; the cross product is another vector (perpendicular to each of the original).
- 2. A dot product is commutative; a cross product is not. In fact,

 $\mathbf{v} \times \mathbf{u} = -(\mathbf{u} \times \mathbf{v})$

Volume of the parallelepiped

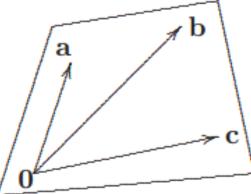
The volume of the parallelepiped determined by the vectors u,v, and w is the magnitude of their scalar triple product: $v = |(u \times v).w|$

ector Analysis-



Corollary:

The vectors a, b, c are coplanar (i.e. they all lie on a plane) if and only if $a \cdot (b \times c) = 0$.



 $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are coplanar

Examples:

1-Find the volume of the box (parallelepiped) determined By u=i+2j-k, v=-2i+3k, and w=7j-4k.

2- Show that the vectors a = <1, 4, -7>, b = <2, -1, 4>, c = <0, -9, 18> are coplanar.

5

Homework :

1- Show that $a \times (b \times c) + b \times (c \times a) + c \times (a \times b) = 0$.

2- Show that $(a \times b) \times (c \times d) = (a \cdot (c \times d)) b - (b \cdot (c \times d)) a$ $= (a \cdot (b \times d)) c - (b \cdot (b \times c)) d.$

3- Suppose the vectors a,b,c,d are coplanar. Show that $(a \times b) \times (c \times d) = 0$.