## Lines and Planes in Space $\left(R^{3}\right)$

In the plane, a line is determined by a point and a number giving the slope of the line.

* In space a line is determined by a point and a vector giving the direction of the line.



## Vector Equation for a Line

A vector equation for the line L through $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ parallel to v is

$$
r(t)=r_{0}+t v, \quad-\infty<t<\infty
$$

where r is the position vector of a point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ on L and $r_{0}$ is the position vector of $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$.


## Parametric Equations for a Line

The standard parameterization of the line L through $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ parallel to $\mathrm{v}=v_{1} i+v_{2} j+v_{3} k$ is

$$
x=x_{0}+t v_{1}, \quad \mathrm{y}=\mathrm{y}_{0}+t v_{2}, \quad \mathrm{z}=\mathrm{z}_{0}+t v_{3} \quad-\infty<\mathrm{t}<\infty
$$



## symmetric equations for a Line

Another way of describing a line is to eliminate the parameter from . If none of $v_{1}, v_{2}$ or $v_{3}$ is 0 , then

$$
\frac{x-x_{0}}{v_{1}}=\frac{y-y_{0}}{v_{2}}=\frac{z-z_{0}}{v_{3}}
$$

Is said to be symmetric equation for a line.

The numbers $v_{1}, v_{2}, v_{3}$ are called the direction numbers, or direction cosines of the straight line.

If $v_{1}, v_{2}$ or $v_{3}$ is zero, we may still write the symmetric equation of the line. For example, if $v_{1}=0$, we shall the symmetric equations as

$$
x=x_{0}, \frac{y-y_{0}}{v_{2}}=\frac{z-z_{0}}{v_{3}}
$$

which is a line lying on the plane x 0 .

## Examples:

1- Find parametric equations for the line through $(-2,0,4)$ parallel to $\mathrm{v}=2 \mathrm{i}+4 \mathrm{j}-2 \mathrm{k}$.
2- Find parametric equations for the line through $\mathrm{p}(-3,2,-3)$ and $\mathrm{Q}(1,-1,4)$.

3- (a) Find a vector equation and parametric equations for the line that passes through the point $(5,1,3)$ and is parallel to the vector $v=i+4 j-2 k$ (b) Find two other points on the line.

4- Show that the lines L1: $x=1+t, y=-2+3 t, z=4-t$,

$$
\mathrm{L} 2: \mathrm{x}=2 \mathrm{~s}, \mathrm{y}=3+\mathrm{s}, \mathrm{z}=-3+4 \mathrm{~s}
$$

are skew, i.e. they do not intersect. Hence they do not lie in the same plane.


## The Distance from a Point to a Line in Space

Distance from a point $S$ to a line through P parallel to v

$$
d=\frac{|\overrightarrow{P S} \times \mathbf{v}|}{|\mathbf{v}|}
$$



## Example:

Find the distance from the point $S(1,1,5)$ to the line

$$
\mathrm{L}: \mathrm{x}=1+\mathrm{t}, \mathrm{y}=3-\mathrm{t}, \mathrm{z}=2 \mathrm{t}
$$

## Equation for a Plane

The plane through $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ normal to $\mathrm{n}=\mathrm{Ai}+\mathrm{Bj}+\mathrm{Ck}$ has
Vector equation: $n \cdot \overrightarrow{\boldsymbol{P}_{0} \boldsymbol{P}}=0$
Component equation: $A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0$
Component equation simplified:

$$
A x+B y+C z=D \quad \text { where } \quad D=A x_{0}+B y_{0}+C z_{0}
$$



## Examples:

1-Find an equation for the plane through $p_{0}=(-3,0,7)$ perpendicular to $\mathrm{n}=5 \mathrm{i}+2 \mathrm{j}-\mathrm{k}$.
2-Find an equation for the plane through $\mathrm{A}(0,0,1), \mathrm{B}(2,0,0)$, and $\mathrm{C}(0,3,0)$.

## Lines of Intersection

Just as lines are parallel if and only if they have the same direction, two planes are parallel if and only if their normals are parallel, or $n_{1}=k n_{2}$ for some scalar k. Two planes that are not parallel intersect in a line.

## Remark:

Let $n_{1}=A_{1} i+B_{1} j+C_{1} k$ and $n_{2}=A_{2} i+B_{2} j+C_{2} k$ be two normal vector for two deferent plane then

- Two plane are perpendicular if $n_{1} \cdot n_{2}=0$
- Two plane are parallel if $\quad n_{1} \times n_{2}=0$
- The angle between two plane is

$$
\theta=\cos ^{-1}\left(\frac{n_{1} \cdot n_{2}}{\left|n_{1}\right| \cdot\left|n_{2}\right|}\right)
$$

## Examples:

1-Find a vector parallel to the line of intersection of the planes $2 x+y-2 z=5$ and $3 x-6 y-2 z=15$.

2- Find parametric equations for the line in which the planes $3 \mathrm{x}-6 \mathrm{y}-2 \mathrm{z}=15$ and $2 \mathrm{x}+\mathrm{y}-2 \mathrm{z}=5$ intersect.

3-Find the point where the line $x=(8 / 3)+2 t, \quad y=-2 t, \quad z=1+t$ intersects the plane $3 x+2 y+6 z=6$.

## Proposition (The Distance from a Point to a Plane)

If P is a point on a plane with normal $\mathbf{n}$, then the distance from any point S to the plane is the length of the vector projection of $\overrightarrow{P S}$ onto $\mathbf{n}$. That is, the distance from $S$ to the plane is
where $\mathrm{n}=\mathrm{Ai}+\mathrm{Bj}+\mathrm{Ck}$ is normal to the plane.

$$
d=\left|\overrightarrow{P S} \cdot \frac{n}{|n|}\right|
$$



Find the distance from $S(1,1,3)$ to the plane $3 x+2 y+6 z=6$.

## Homework :

1- a) Find the angle $\theta,\left(0 \leq \theta \leq 90^{\circ}\right)$ between the planes $\mathrm{x}+\mathrm{y}+\mathrm{z}=1$ and $\mathrm{x}-2 \mathrm{y}+3 \mathrm{z}=1$.
b) Find the symmetric equations for the line of intersection of the planes in (a).
2- Find the distance between the parallel planes $10 x+2 y-2 z=\frac{5}{5}$ and $5 \mathrm{x}+\mathrm{y}-\mathrm{z}=1$.
3 - Find the distance between the skew lines:

$$
\begin{aligned}
& \mathrm{L} 1: \mathrm{x}=1+\mathrm{t}, \mathrm{y}=-2+3 \mathrm{t}, \mathrm{z}=4-\mathrm{t} \\
& \mathrm{~L} 2: \mathrm{x}=2 \mathrm{~s}, \mathrm{y}=3+\mathrm{s}, \mathrm{z}=-3+4 \mathrm{~s}
\end{aligned}
$$

4- Find the equation of the straight line passing through the point $\mathrm{P} 0(1,5,-1)$ and perpendicular to the lines

$$
\begin{aligned}
& \mathrm{L} 1: \mathrm{x}=5+\mathrm{t}, \mathrm{y}=-1-\mathrm{t}, \mathrm{z}=2 \mathrm{t} \text { and } \\
& \mathrm{L} 2: \mathrm{x}=11 \mathrm{t}, \mathrm{y}=7 \mathrm{t}, \mathrm{z}=-2 \mathrm{t} .
\end{aligned}
$$

