1. Define a column vector $\mathbf{U}$ in $R^{n}$ ?
2. Find the value of $x, y$ that makes $(x, 3)$ and $(2, x+y)$ equals?
3. To which vector space $R^{n}$ does each vector belong? Use $(3,-2,5,3 \mathrm{i}),(3,2),(\pi, 2,-5 \pi)$ ?
4. Prove that $\mathbf{K} . \mathbf{O}=\mathbf{0}$ ?
5. Define an $\mathbf{m x n}$ linear system and then solve the following system of linear equations:
$x_{1}+2 x_{2}+x_{3}=3$
$3 x_{1}-x_{2}-3 x_{3}=-1$
$2 x_{1}+3 x_{2}+x_{3}=4$
Hint:[Using augmented matrix form] ?
6. Label the following statements as true or false, and correct it if it's false?
a. The zero vector space has no basis.
b. Every vector space has a finite basis.
c. A vector space can't have more than one basis.
d. The dimension of $M_{m x n}(F)$ is $\mathrm{m}+\mathrm{n}$.
e. If $S$ generates the vector space $V$, then every vector in $V$ can be written as a linear combination of vectors in $S$ in only one way.
7. Define the concept of dimension of a vector space, and then show that ?
8. Let $v_{1}=(1,1,1,1), v_{2}=(0,1,1,1), v_{3}=(0,0,1,1)$ and $v_{4}=(0,0,0,1)$ form a basis for $R^{4}$.Find the unique representation of an arbitrary vector ( $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ ) in $R^{4}$ as a linear combination of $v_{1}, v_{2}, v_{3}$ and $v_{4}$.?
9. Find dimension of a subspace $M+N$ in $R^{3}$ if $M=\{(x, y, z): x-2 y+z=0\}$, $N=\{(x, y, z): 2 x+5 y=0\}$.

Show that Both $L$ and $T$ be two linear transformations on $R^{3}$ where each one defined by $L(x, y, z)=(0, y, z), T(x, y, z)=(x, 0,0)$ ?
10. Let $N, M$ be two subspaces which $N=\left\{a+b x+c x^{2} ; a=b=c\right\}, \quad M=\left\{a+b x+c x^{2} ; b=0\right\}$,then find $\mathrm{M} \oplus \mathrm{N}$ ?
11. Let $U=\{(x, y, z), x-y=z\}$, is $U$ a subspace or not of $R^{3}$ ?
12. Find a linear transformation , $\mathrm{L}: R^{3} \rightarrow R^{2}$ such that $\mathrm{S}=\{(1,-1,0),(2,0,1)\}$ is a basis for it's kernel.
13. Let $\mathbf{V}$ be the vector space of all functions from the real field $\mathbf{R}$ into $\mathbf{R}$. Show that $\mathbf{W}$ is a subspace of $\mathbf{V}$, where $\mathbf{W}=\{f: f(7)=f(1)\}$ ?
14. Is the real field $\mathbf{R}$ a vector space? a-over $\mathbf{Q} \mathbf{b}$ - over $\mathbf{Z}$ c-over $\mathbf{C}$ ?
15. Let $\mathbf{U}$ and $\mathbf{W}$ be the subspaces of $\mathbf{R}^{\mathbf{3}}$ defined by $\mathbf{U}=\{(a, b, c): a=b=c\}$ and $\mathbf{W}=\{(0, b, c): b, c \in$ $\mathbf{R}\}$. Show that $\mathbf{R}^{\mathbf{3}}=\mathbf{U} \oplus \mathbf{W}$ ?

