What Is Linear Algebra?

\square

1 Introduction

Linear Algebra is the branch of mathematics aimed at solving systems of linear equations with a finite number of unknowns. In particular one would like to obtain answers to the following questions:

- Characterization of solutions: Are there solutions to a given system of linear equations? How many solutions are there?
- Finding solutions: How does the solution set look like? What are the solutions?

Linear Algebra is a systematic theory regarding the solutions of systems of linear equations.
Example 1.1. Let us take the system of two linear equations in two unknowns x_{1} and x_{2}

$$
\begin{array}{r}
2 x_{1}+x_{2}=0, \\
x_{1}-x_{2}=1 .
\end{array}
$$

It has a unique solution for $x_{1}, x_{2} \in \mathbb{R}$, namely $x_{1}=\frac{1}{3}$ and $x_{2}=-\frac{2}{3}$.
Example 1.2. Let us take the system of one linear equation in two unknowns x_{1} and x_{2}

$$
x_{1}-3 x_{2}=0
$$

In this case there are infinitely many solutions given by the set $\left\{\left.x_{2}=\frac{1}{3} x_{1} \right\rvert\, x_{1} \in \mathbb{R}\right\}$. You can think of this solution set as a line in 2-space:

2 Systems of linear equations

2.1 Linear equations

Before going on, let us be a bit more precise about what we mean by a system of linear equations. A function f is a map

$$
\begin{equation*}
f: X \rightarrow Y \tag{1}
\end{equation*}
$$

from a set X to a set Y. The set X is called the domain of the function and the set Y is called the target space or codomain of the function. An equation is

$$
\begin{equation*}
f(x)=y, \tag{2}
\end{equation*}
$$

where $x \in X$ and $y \in Y$.
Example 2.1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function $f(x)=x^{3}-x$. Then $f(x)=x^{3}-x=1$ is an equation. The domain and target space are both the set of real numbers \mathbb{R} in this case.

In this setting a system of equations is just another kind of equation.
Example 2.2. Let $X=Y=\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}$ be the Cartesian product of the set of real numbers. Then define the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ as

$$
\begin{equation*}
f\left(x_{1}, x_{2}\right)=\left(2 x_{1}+x_{2}, x_{1}-x_{2}\right) \tag{3}
\end{equation*}
$$

and $y=(0,1)$. Then the equation $f(x)=y$, where $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ describes the system of linear equations of Example 1.1.

The next question is, what is a linear equation? A linear equation is defined by a linear function f defined on a linear space, also known as a vector space. We will elaborate on this in future lectures, but let us demonstrate the main feature of a vector space in terms of the example \mathbb{R}^{2}. Take $x=\left(x_{1}, x_{2}\right), z=\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2}$. There are two operations defined on \mathbb{R}^{2}, namely addition and scalar multiplication

$$
\begin{align*}
x+z & :=\left(x_{1}+z_{1}, x_{2}+z_{2}\right) & & \text { (vector addition) } \tag{4}\\
c x & :=\left(c x_{1}, c x_{2}\right) & & \text { (scalar multiplication). } \tag{5}
\end{align*}
$$

A linear function is a function f such that

$$
\begin{align*}
f(c x) & =c f(x) \tag{6}\\
f(x+z) & =f(x)+f(z) . \tag{7}
\end{align*}
$$

Please check for yourself that the function f of Example 2.2 has these properties.

2.2 Non-linear equations

(Systems of) Linear equations are a very important class of (systems of) equations. For example, we will learn in this class how to solve systems of linear equations in general. Non-linear equations are much harder to solve. An example of a quadratic equation is

$$
\begin{equation*}
x^{2}+x-2=0 . \tag{8}
\end{equation*}
$$

It has two solutions $x=-2$ and $x=1$. What about the equation

$$
\begin{equation*}
x^{2}+x+2=0 ? \tag{9}
\end{equation*}
$$

This equation does not have any solution in the set of real numbers. Next lecture we will discuss complex numbers in more detail.
(Recall that the quadratic equation $x^{2}+b x+c=0$ has the two solutions

$$
\left.x=-\frac{b}{2} \pm \sqrt{\frac{b^{2}}{4}-c} .\right)
$$

2.3 Linear transformations

The set \mathbb{R}^{2} can be viewed as the plane. In this context linear functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ or $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ can be interpreted geometrically as "motions" in the plane and are called linear transformations.

Example 2.3. Recall the two linear equations of Example 1.1

$$
\begin{array}{r}
2 x_{1}+x_{2}=0 \\
x_{1}-x_{2}=1 .
\end{array}
$$

Each equation can be interpreted as a straight line in the plane. The solutions $\left(x_{1}, x_{2}\right)$ to both equations are given by the set of points that lie on both lines.

Example 2.4. The linear map $f\left(x_{1}, x_{2}\right)=\left(x_{1},-x_{2}\right)$ describes the reflection across the x-axis.

Example 2.5. The linear map $f\left(x_{1}, x_{2}\right)=\left(-x_{2}, x_{1}\right)$ describes the rotation by 90^{0} counterclockwise.

Example 2.6. For an angle $\theta \in[0,2 \pi)$, find the linear map f_{θ} which describes the rotation by the angle θ in the counterclockwise direction.
Hint: For a given angle θ find a, b, c, d such that $f_{\theta}\left(x_{1}, x_{2}\right)=\left(a x_{1}+b x_{2}, c x_{1}+d x_{2}\right)$.

2.4 Applications of linear equations

Linear equations pop up in many different contexts. For example you can view the derivative $d f / d x$ of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ as a linear approximation of f. This becomes apparent when you look at the Taylor series of the function $f(x)$ around the point a (see MAT 21C)

$$
\begin{equation*}
f(x)=f(a)+d f / d x(a)(x-a)+\cdots \tag{10}
\end{equation*}
$$

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a function of more than one variable, one can still view the derivative of f as the linear approximation of f; see MAT 21D.

What about infinitely many variables x_{1}, x_{2}, \ldots ? In this case the system of equations has the form

$$
\begin{array}{r}
a_{1} x_{1}+a_{2} x_{2}+\cdots=y_{1} \\
b_{1} x_{1}+b_{2} x_{2}+\cdots=y_{2}
\end{array}
$$

Hence the sums are infinite, so that one is dealing with series and the question of convergence arises. Convergence depends on $x=\left(x_{1}, x_{2}, \ldots\right)$ which is the variable we want to solve for.

