Linear Algebra

- 1. Define a column vector **U** in Rⁿ?
- 2. Find the value of x,y that makes (x,3) and (2,x+y) equals?
- 3. To which vector space R^n does each vector belong? Use (3,-2,5,3i), (3,2), $(\pi, 2,-5,\pi)$?
- 4. Prove that **K.0=0**?
- 5. Define an **mxn** linear system and then solve the following system of linear equations:

$$x_1 + 2x_2 + x_3 = 3$$

 $3x_1 - x_2 - 3x_3 = -1$
 $2x_1 + 3x_2 + x_3 = 4$

Hint:[Using augmented matrix form]?

- 6. Label the following statements as true or false, and correct it if it's false?
 - a. The zero vector space has no basis.
 - b. Every vector space has a finite basis.
 - c. A vector space can't have more than one basis.
 - d. The dimension of $\ M_{{}_{m\!x\!n}}\left(F\right) \$ is m+n .
 - e. If S generates the vector space V, then every vector in V can be written as a linear combination of vectors in S in only one way.
- 7. Define the concept of dimension of a vector space, and then show that ?
- 8. Let $v_1 = (1,1,1,1)$, $v_2 = (0,1,1,1)$, $v_3 = (0,0,1,1)$ and $v_4 = (0,0,0,1)$ form a basis for R^4 . Find the unique representation of an arbitrary vector (a,b,c,d) in R^4 as a linear combination of v_1, v_2, v_3 and v_4 .?
- 9. Find dimension of a subspace M+N in R³ if M={(x, y, z): x-2y+z=0}, N= {(x, y, z): 2x+5y=0}.

Show that Both $\,$ L and $\,$ T be two linear transformations on $\,$ R 3 $\,$ where each one defined by

$$L(x, y, z)=(0, y, z), T(x, y, z)=(x, 0, 0)$$
?

10. Let N, M be two subspaces which N= {a+ bx+ cx 2 ;a=b=c}, M= {a+bx+cx 2 ;b=0},then find M \oplus N?

- 11. Let $U = \{(x, y, z), x-y=z\}$, is U a subspace or not of \mathbb{R}^3 ?
- 12. Find a linear transformation , L: $R^3 \rightarrow R^2$ such that S={(1,-1,0),(2,0,1)} is a basis for it's kernel.
- 13. Let V be the vector space of all functions from the real field R into R. Show that W is a subspace of V, where W= {f: f (7) = f (1)}?
- 14. Is the real field **R** a vector space? **a**-over **Q b** over **Z c**-over **C**?
- 15. Let **U** and **W** be the subspaces of \mathbb{R}^3 defined by $\mathbb{U}=\{(a,b,c):a=b=c\}$ and $\mathbb{W}=\{(0,b,c):b,c\in\mathbb{R}\}$. Show that $\mathbb{R}^3=\mathbb{U}\oplus\mathbb{W}$?