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Experiment No. 1 

Basic Logic Gates Implementation and Verification 
 

Introduction: 

A gate is a logic circuit with one output and one or more inputs. An output occurs 

only for a certain combinations of input signals. Logic gates are digital (two states) 

circuits because the input and the output signals are either high or low voltages. 

Gates can be described with Boolean algebra. 

A diode is like an electronic switch. When a diode is forward biased and a required 

forward voltage is applied, the diode is on (switch is on). However, when zero 

voltage or a revered biased voltage is applied the diode is off (switch is off). This 

characteristic of the diode is very useful to build logic gate such as OR and AND 

gates. 

In a transistor, the collector-to-emitter impedance is quite low near or at saturation 

and large near or at cutoff. For instance, the load line defines saturation as the point 

where the current is quite high and the collector-to-emitter voltage quite low as 

shown in Figure 1.1. At cutoff, the current is relatively low and the voltage near its 

maximum value. The above impedance levels established by “on” and “off” 

transistors make it relatively easy to understand the operation of the logic gates. 

 

 

Figure 1.1 Points of operation for a BJT logic gate. 
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The Circuits: 

                     

Figure 1.2 OR gate Figure 1.3 AND gate 

 

 

     Figure 1.4 Invertor                  Figure 1.5 NAND gate                         Figure 1.6 NOR gate 

 

Logic Gates 

 

1. AND gate: Function of AND gate is to give the output true when both inputs 

are true. In all the other remaining cases output becomes false. 

 

2. OR gate: Function of OR gate is to give output true when at least one of the 

inputs is true. In the remaining case output becomes false. 

 

3. NOT gate: Function of NOT gate is to reverse the nature of the input. It 

converts true input to false and vice versa. 
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4. NAND gate: Function of NAND gate is to give true output when at least one 

of the provided inputs is false. 

 

5. NOR gate: NOR gate gives the output true when all provided inputs are false. 

In all the other cases output remains false. 

 

6. XOR gate: The function of XNOR gate is to give output true when one of the 

inputs is true and the other is false. 

 

7. XNOR gate: The function of XOR gate is to give output true only when both 

inputs are true or false. 

 
 

 

 
Figure. 1.7 
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Figure 1.8 

 

Procedure: 

Verify the truth tables as shown in Figure 1.7 & 1.8 by connecting their ICs. 

 

Discussion: 

Write truth table of the logic gates for the three inputs. 
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Experiment No. 2 

NAND Gate as Universal Gate 

 

Introduction: 

A universal gate is a gate which can implement any Boolean function without need to 

use any other gate type. The NAND gate is the universal gate. In practice, this is 

advantageous since NAND gate is economical and easier to fabricate and is the basic 

gate used in all IC digital logic families. All logic gates can be implemented by 

NAND gate as shown in figure below. 

 

 

Figure 2.1 

Procedure: 

Connect the circuits shown in Figure 2.1. Then, verify their truth table. 

Discussion: 

Implementing 𝑌 =  𝐴𝐵𝐶 +  𝐴𝐵̅𝐶 + 𝐴̅𝐵̅𝐶 +  𝐴𝐶 by using only NAND gates. 
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Experiment No. 3 

Implementation of Given Boolean Function  

Using Logic Gates in both SOP and POS 

 

Introduction: 

 

a) SOP: It is the Sum of product form. It is denoted in the K-map expression by 

sigma (Σ). 

Y= A.B + A’.B’ 

 

Truth Table for this SOP expression: 

 

 
 

Logic Circuit of this SOP expression: 

 
Figure.3.1 

 

b) POS: It is the product of the sums form. It is denoted in the K-Map expression by 

the sign pie (π). 

Y= (A’+B) (A+B’) 

Truth Table for this POS expression: 

 

A B A’ B’ A’+B A+B’ Y=(A’+B)(A+B’) 

0 0 1 1 1 1 1 

0 1 1 0 1 0 0 

1 0 0 1 0 1 0 

1 1 0 0 1 1 1 
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Logic Circuit of this POS expression: 

 

Figure 3.2 

 

Procedure: 

Connect the circuits shown in Figure 3.1 and 3.2. Then, verify their truth table. 

 

Discussion: 

Write two Boolean expressions for three inputs of SOP & POS with their truth 

tables and logic circuits. 
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Experiment No. 4 

Half and Full Adder 
 

Introduction: 

Digital computers perform a variety of information-processing tasks. Among the 

basic functions encountered are the various arithmetic operations. The most basic 

arithmetic operation is the addition of two binary digits. This simple addition consists 

of four possible elementary operations namely, 0+0=0, 0+1=1, 1+0=1, 1+1=10. The 

first three operations produce a sum whose length is one digit, but when both 

augends and addend bits are equal to 1, the binary sum consists of two digits. The 

higher significant bit of this result is called a carry. When the augends and addend 

numbers contain more significant digits, the carry obtained from the addition of two 

bits is added to the next Higher-order pair of significant bits. A combinational circuit 

that performs the addition of two bits is called a (half-adder). One that performs the 

addition of three bits (tow significant bits and a previous carry) is a (full-adder). The 

name of the former stems from the fact that tow half-adder can be employed to 

implement a full-adder. 

Half-Adder: From the verbal explanation of a half-adder, we find that this circuit 

needs tow binary inputs and tow binary outputs: 

B A Carry Sum 

0 0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 0 

 

The carry output is 0 unless both inputs are 1. The sum output represents the least 

significant bit of the result. 

The Boolean functions for the tow outputs: 

𝑆𝑢𝑚 = 𝐴 ⨁ 𝐵   ………… (1) 

𝐶𝑎𝑟𝑟𝑦 = 𝐴 ∙  𝐵   ………… (2) 

Figure 4.1 A represent the implementation of the half-adder. 

Full-Adder is a combinational circuit that forms the arithmetic sum of three input 

bits. It consists of three inputs and two outputs. The third input, Ci, represents the 

carry from the previous lower significant position. The truth table of the full-adder is 

as follows: 
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B A Ci Carry Sum 

0 0 0 0 0 

0 0 1 0 1 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 1 

 

The full-adder can be implemented with two half-adders and OR gate. The sum 

output from the second half-adder is the EX-OR of Ci and the output of the first half-

adder, giving: 

𝑆𝑢𝑚 = 𝐶𝑖  ⨁ (𝐴 ⨁ 𝐵)   

𝑆𝑢𝑚 = 𝐴𝐵̅𝐶𝑖̅ + 𝐴̅𝐵𝐶𝑖̅ + 𝐴𝐵𝐶𝑖 + 𝐴̅𝐵̅𝐶𝑖̅    ………… (3) 

𝐶𝑎𝑟𝑟𝑦 = 𝐴𝐵 + 𝐴𝐶𝑖 + 𝐵𝐶𝑖   ………… (4) 

 

Procedure: 

1. Connect the circuit of Figure 4.1 A. Verify its truth-table. 

2. Connect the circuit of Figure 4.2 B. Verify its truth-table. 

 

Discussion: 

1. Draw the full-adder circuit using NAND gates only. 

2. Derive equation (4). 

3. Construct a full- adder using half- adder circuit. 

4. Construct a binary adder that adds two 5-bit numbers. 

 

Figure 4.1 A 
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Figure 4.1 B 

 

 

Figure 4.2 A 

 

Figure 4.2 B 
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Experiment No. 5 

Magnitude Comparator 

 

Introduction: 

The comparison of two numbers is an operation that determines if one number is 

greater than, less than, or equal to the other number. A magnitude comparator is a 

combinational circuit that compares two numbers, A and B, and determines their 

relative magnitudes. The outcome of the comparison is specified by three binary 

variables that indicates whether A > B, A = B or A < B. 

The operation of a two one-bit comparator can be described by following truth-

table: 

A B E (A = B) G (A > B) L (A < B) 

0 0 1 0 0 

0 1 0 0 1 

1 0 0 1 0 

1 1 1 0 0 

 

According to the truth table, the Boolean equation will be as follows: 

𝐸 = 𝐴 𝐵 + 𝐴 𝐵   ………… (1) 

𝐺 = 𝐴 𝐵   ………… (2) 

𝐿 = 𝐴 𝐵   ………… (2) 

Equation (1) represents a (2-input) EX-NOR gate, and can be rewritten as: 

𝐸 = 𝐴 ⊙ 𝐵 = 𝐴 ⨁ 𝐵 = 𝐴 𝐵 + 𝐴 𝐵   ………… (4) 

Therefore, from equation (4), (2), and (3), a 1-bit magnitude comparator logic 

circuit can be implemented as shown in Figure 5.1. 

Note: MSI IC 7485 is a 4-bit magnitude comparator. 

Procedure: 

1. Connect the circuit shown in Figure 5.1. 

2. Construct the truth-table. 

3. Connect the circuit shown in Figure 5.2. 

4. Construct the truth-table. 
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Discussion: 

1. Design a 1-bit magnitude comparator using (NAND) gate only. 

2. Design a 3-bit magnitude comparator using (NAND) gates only. 

3. Design a 3-bit magnitude comparator using the 7485 IC. Write down its truth-

table. 

4. Design an 8-bit magnitude comparator, using the 7485 ICS. 

 

 

 

 

 

 

 

Figure 5.1 

 

Figure 5.2 



Digital Electronic Circuits Lab. | 14  

 
 

 

Experiment No. 6 

Multiplexer and Demultiplexer 

 

Introduction: 

   A. Multiplexer (Data Selector): 

A multiplexer (MUX) is a device that allows digital information from several 

sources to be routed onto a single line for transmission over that line to common 

destination. The basic multiplexer, then has several data input lines and a single 

output line. It also has data selector inputs that permit digital data on any one of the 

inputs to be switched to the output line. 

A simple multiplexer can be represented by switch operation that sequentially 

connects each of the input lines with the output, as illustrated in Figure 6.1. 

 

Figure 6.1 Simple Multiplexer operation 

Assume that we have logic levels, an indicated on three inputs. During time 

interval T1, input A is connected to the output; during time interval T2, input B is 

connected to the output; during time interval T3, input C is connected to the output. 

The logic symbol for 4-input multiplexer is shown in Figure 6.2. Notice that there are 
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two selection lines because with two selection bits, each of the four data-input lines 

can be selected. 

 

Figure 6.2 Logic symbol for 4-to-1 Data Selector 

 

If a binary 0 (S1 = 0 & S0 = 0) is applied to the data-select lines, the data on input 

D0 appears on the output. If a binary 1 (S1 = 0 & S0 = 1) is applied to the data-select 

lines, the data on input D1 appears on the output. If a binary 2 (S1 = 1 & S0 = 0) is 

applied to the data-select lines, the data on input D2 appears on the output. If a binary 

3 (S1 = 1 & S0 = 1) is applied to the data-select lines, the data on input D3 are 

switched to the output. A summary of this operation is given in Table 6.1. 

 

Data-Select Inputs 
Input Selected 

S1 S0 

0 0 D0 

0 1 D1 

1 0 D2 

1 1 D3 

Table 6.1 Data Selection for a 4- input Multiplexer 

The data output Y is equal to the data input D0 if and only if S1 = 0 & S0 = 0: 𝑌 =

𝐷0 ∙ 𝑆1 ∙ 𝑆0 
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The data output Y is equal to the data input D1 if and only if S1 = 0 & S0 = 1: 𝑌 =

𝐷1 ∙ 𝑆1 ∙ 𝑆0 

The data output Y is equal to the data input D2 if and only if S1 = 1 & S0 = 0: 𝑌 =

𝐷2 ∙ 𝑆1 ∙ 𝑆0 

The data output Y is equal to the data input D3 if and only if S1 = 1 & S0 = 1: 𝑌 =

𝐷3 ∙ 𝑆1 ∙ 𝑆0 

There terms are (OR), the total expression for the data output is:  

𝑌 = 𝐷0 ∙ 𝑆1 ∙ 𝑆0 + 𝐷1 ∙ 𝑆1 ∙ 𝑆0 + 𝐷2 ∙ 𝑆1 ∙ 𝑆0 + 𝐷3 ∙ 𝑆1 ∙ 𝑆0 

 

The implementation of the above equation is shown in Figure 6.3. 

 

Figure 15.3 Logic Diagram for a 4-input multiplexer 

 

   B. Demultiplexer: 

A demultiplexer (DMUX) basically reverses the multiplexing function. It takes 

data from one line and distributes them to a given number of output lines. Figure 6.4 

shows a one-line to four-line demultiplexer circuit. 
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Figure 6.4 Logic Symbol 1-to-4 line Demultiplexer 

The input data line goes to all AND gates. The two select lines will pass through 

the selected gate to the associated output line. 

Figure 6.5 shows a 1-line to 4-line demultiplexer circuit. The two select lines 

enable only one gate at time, and the data appearing on the input line will pass 

through the selected gate to the selected gate to the associated output line. 

 

Figure 6.5 1-to-4 line Demultiplexer 
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Procedure: 

A. Multiplexer: 

1. Connect a circuit of 2-to-1 multiplexer and observe its truth table. 

2. Connect a circuit of Figure 15.3 and observe its truth table. 

 

B. Demultiplexer: 

         Connect a circuit of Figure 15.5 and observe its truth table. 

Discussion: 

1. The data input and select waveforms in Figure 6.6 are applied to the multiplexer 

in Figure 6.3. Determine the output waveform in relation the input. 

 
                                                                       Figure 6.6 

 

 

2. The serial data input waveform and data selectors are shown in Figure 6.7. 

Determine the data-output waveform for the demultiplexer shown in Figure 6.5. 
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                                                                       Figure 6.7 

3. Design 6-to-1 MUX. and verify its truth table. 

4. Design 1-to-5 DMUX. and verify its truth table. 
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Experiment No. 7 

Parity Checker and Generator 

Introduction: 

Errors can occur as digital codes are being transferred from one point to another 

within a digital system or while codes are being transmitted from one system to 

another. The errors take the form of undesired changes in the bits that make up the 

coded information; that is, a "1" can change to a "0", or a "0" to "1", due to 

component malfunction or electrical noise. Many systems, however, employ a parity 

bit as a means of detecting a bit error. A parity bit is scheme for detecting errors 

during transmission of binary information. An extra bit included with the binary 

massage to make the number of 1s either odd or even. The massage including, the 

parity bit, is transmitted and then checked at the receiving end for errors. An error is 

detected if the checked parity does not correspond to the one transmitted. The circuit 

that generates the parity bit in the transmitter is called a parity generator, the circuit 

that checks the parity in the receiver is called a parity checker. 

The parity of a binary word can be determined with an XOR gates circuit. The 

Figure 7.1 shows the parity generator circuit at the transmitter end, and figure 7.2 

shows the parity checker circuit at the receiver end. 

 

 
Figure 7.1 Parity Generator Circuit 
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Figure 7.2 Parity Checker Circuit 

 

 

Figure 7.3 Parity Generator Circuit using NAND Gates 
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Procedure: 

1. Connect the circuit shown in Figure 7.1. 

2. Derive the truth-table. 

3. Connect the circuit shown in Figure 7-2. Repeat step (2). 

4. Connect the circuit shown in Fig 7.3. Repeat step (2). 

 

Discussion: 

1. Write down the Boolean equation for Figure 7.3. 

2. Construct a truth-table and add to the binary code, the odd-parity bit. Draw the 

logic circuit using NOR gates. 

3. Repeat step (2) for NAND gate. 
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Experiment No. 8 

Binary-to-Gray and Gray-to-Binary Code Convertor 
 

Introduction: 

The gray code is an unweighted code not suited to arithmetic operation, but useful 

for input – output device, analog-to-digital converters, shaft encoder, and other 

peripheral equipment. 

Table 8.1 shows the gray code, along with the corresponding binary numbers. The 

feature of gray code is that in progressing from one number to the next in sequence 

only one of the binary digits (bits) suffers a change. 

 

 Binary Gray 

Decimal A B C D X1 X2 X3 X4 

0 0 0 0 0 0 0 0 0 

1 0 0 0 1 0 0 0 1 

2 0 0 1 0 0 0 1 1 

3 0 0 1 1 0 0 1 0 

4 0 1 0 0 0 1 1 0 

5 0 1 0 1 0 1 1 1 

6 0 1 1 0 0 1 0 1 

7 0 1 1 1 0 1 0 0 

8 1 0 0 0 1 1 0 0 

9 1 0 0 1 1 1 0 1 

10 1 0 1 0 1 1 1 1 

11 1 0 1 1 1 1 1 0 

12 1 1 0 0 1 0 1 0 

13 1 1 0 1 1 0 1 1 

14 1 1 1 0 1 0 0 1 

15 1 1 1 1 1 0 0 0 

Table 8.1 

Sometimes, we have to convert binary numbers into gray code numbers and vice 

versa. A Binary- Gray code converter is a device for converting a binary number 

applied at its input terminals into the equivalent gray code number at its output 

terminals as shown in Figure 8.1. 

 

For instance, in converting from Binary digit (A). Add each pair of adjacent bits to 

get next gray digit as follows: 
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𝑋1 = 𝐴,       𝑋2 = 𝐴 + 𝐵,       𝑋3 = 𝐵 + 𝐶,          𝑋4 = 𝐶 + 𝐷 

 

And to convert from gray code to binary we use the following formula: 

𝐴 = 𝑋1,       𝐵 = 𝐴 + 𝑋2,       𝐶 = 𝐵 + 𝑋3,          𝐷 = 𝐶 + 𝑋4 

Figure 8.2 and 8.3 shows a way to build a 4-bits binary-to-Gray and gray-binary 

converter by using exclusive-OR circuits. 

 

Procedure: 

1. Connect the circuit shown in figure 8.2. 

2. Use all combinations of states of switches (A, B, C, and D) to get the data of 

table 8.1. Note that the lamps (X1, X2, X3, and X4) display the gray code 

number. 

3. Re-arrange the circuit connected in step (1) to be as shown in figure 8.3. 

The circuit in this case will be a Gray-to-binary converter instead of binary-

to-Gray converter. 

4. Use all combinations of states of switches (X1, X2, X3, and X4) to get the 

data of table 8.1, and note that lamps (A, B, C and D) display the binary 

number. 

Discussion: 

1. Convert the following gray numbers into binary number: 

a) 10101          b) 100110011             c) 00111000100110 

2. Convert the following binary numbers into gray number: 

a) 1010110      b) 1011001001           c) 10101101110011 

3. Draw a logic circuit that converts 10-bits binary numbers into gray code 

numbers, use exclusive-OR gates. 

4. Draw a logic circuit that converts 10-bits gray numbers into binary numbers, 

use exclusive-OR-gates. 
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Figure 8.1 

 

 

Figure 8.2 Binary-to-Gray Convertor 
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Figure 8.3 Gray-to-Binary Converter 
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Experiment No. 9 

Controlled Invertors 
 

Introduction: 

Another application of XOR gate is the controlled or programmed inverter. See 

Figure 9.1. When the input, control, is low, it transmits the binary word to the output 

(unchanged). But when, control, is high it transmits the 1s complement. 

 

Figure 9.1 Controlled Inverter Circuit 

 

Procedure: 

1. Connect the circuit shown in Figure 9.1. 

2. Derive the truth-table. 

 

Discussion: 

1. Construct a controlled inverter circuit using NAND gates only. 

2. How many NOR gates do we need to construct a controlled inverter for 48-bit 

word. 

 

 


