

Digital Electronic Circuits Lab.

Student Manual

 Salahaddin University-Erbil

 College of Engineering

 Electrical Engineering Dept.

Prepared by

Mr. Basheer A. Abdullah Mr. Azad N. Abdulla

Mr. Goran Wnis Mr. Niyaz O. Ali

Digital Electronic Circuits Lab. | 1

Contents

Experiment No. 1 Basic Logic Gates Implementation and Verification 2

Experiment No. 2 NAND Gate as Universal Gate .. 6

Experiment No. 3 Implementation of Given Boolean Function Using Logic Gates in

both SOP and POS7

Experiment No. 4 Half and Full Adder .. 9

Experiment No. 5 Magnitude Comparator ... 12

Experiment No. 6 Multiplexer and Demultiplexer .. 14

Experiment No. 7 Parity Checker and Generator .. 20

Experiment No. 8 Binary-to-Gray and Gray-to-Binary Code Convertor 23

Experiment No. 9 Controlled Invertors.. 27

Digital Electronic Circuits Lab. | 2

Experiment No. 1

Basic Logic Gates Implementation and Verification

Introduction:

A gate is a logic circuit with one output and one or more inputs. An output occurs

only for a certain combinations of input signals. Logic gates are digital (two states)

circuits because the input and the output signals are either high or low voltages.

Gates can be described with Boolean algebra.

A diode is like an electronic switch. When a diode is forward biased and a required

forward voltage is applied, the diode is on (switch is on). However, when zero

voltage or a revered biased voltage is applied the diode is off (switch is off). This

characteristic of the diode is very useful to build logic gate such as OR and AND

gates.

In a transistor, the collector-to-emitter impedance is quite low near or at saturation

and large near or at cutoff. For instance, the load line defines saturation as the point

where the current is quite high and the collector-to-emitter voltage quite low as

shown in Figure 1.1. At cutoff, the current is relatively low and the voltage near its

maximum value. The above impedance levels established by “on” and “off”

transistors make it relatively easy to understand the operation of the logic gates.

Figure 1.1 Points of operation for a BJT logic gate.

Digital Electronic Circuits Lab. | 3

The Circuits:

Figure 1.2 OR gate Figure 1.3 AND gate

 Figure 1.4 Invertor Figure 1.5 NAND gate Figure 1.6 NOR gate

Logic Gates

1. AND gate: Function of AND gate is to give the output true when both inputs

are true. In all the other remaining cases output becomes false.

2. OR gate: Function of OR gate is to give output true when at least one of the

inputs is true. In the remaining case output becomes false.

3. NOT gate: Function of NOT gate is to reverse the nature of the input. It

converts true input to false and vice versa.

Digital Electronic Circuits Lab. | 4

4. NAND gate: Function of NAND gate is to give true output when at least one

of the provided inputs is false.

5. NOR gate: NOR gate gives the output true when all provided inputs are false.

In all the other cases output remains false.

6. XOR gate: The function of XNOR gate is to give output true when one of the

inputs is true and the other is false.

7. XNOR gate: The function of XOR gate is to give output true only when both

inputs are true or false.

Figure. 1.7

Digital Electronic Circuits Lab. | 5

Figure 1.8

Procedure:

Verify the truth tables as shown in Figure 1.7 & 1.8 by connecting their ICs.

Discussion:

Write truth table of the logic gates for the three inputs.

Digital Electronic Circuits Lab. | 6

Experiment No. 2

NAND Gate as Universal Gate

Introduction:

A universal gate is a gate which can implement any Boolean function without need to

use any other gate type. The NAND gate is the universal gate. In practice, this is

advantageous since NAND gate is economical and easier to fabricate and is the basic

gate used in all IC digital logic families. All logic gates can be implemented by

NAND gate as shown in figure below.

Figure 2.1

Procedure:

Connect the circuits shown in Figure 2.1. Then, verify their truth table.

Discussion:

Implementing 𝑌 = 𝐴𝐵𝐶 + 𝐴𝐵̅𝐶 + 𝐴̅𝐵̅𝐶 + 𝐴𝐶 by using only NAND gates.

Digital Electronic Circuits Lab. | 7

Experiment No. 3

Implementation of Given Boolean Function

Using Logic Gates in both SOP and POS

Introduction:

a) SOP: It is the Sum of product form. It is denoted in the K-map expression by

sigma (Σ).

Y= A.B + A’.B’

Truth Table for this SOP expression:

Logic Circuit of this SOP expression:

Figure.3.1

b) POS: It is the product of the sums form. It is denoted in the K-Map expression by

the sign pie (π).

Y= (A’+B) (A+B’)

Truth Table for this POS expression:

A B A’ B’ A’+B A+B’ Y=(A’+B)(A+B’)

0 0 1 1 1 1 1

0 1 1 0 1 0 0

1 0 0 1 0 1 0

1 1 0 0 1 1 1

Digital Electronic Circuits Lab. | 8

Logic Circuit of this POS expression:

Figure 3.2

Procedure:

Connect the circuits shown in Figure 3.1 and 3.2. Then, verify their truth table.

Discussion:

Write two Boolean expressions for three inputs of SOP & POS with their truth

tables and logic circuits.

Digital Electronic Circuits Lab. | 9

Experiment No. 4

Half and Full Adder

Introduction:

Digital computers perform a variety of information-processing tasks. Among the

basic functions encountered are the various arithmetic operations. The most basic

arithmetic operation is the addition of two binary digits. This simple addition consists

of four possible elementary operations namely, 0+0=0, 0+1=1, 1+0=1, 1+1=10. The

first three operations produce a sum whose length is one digit, but when both

augends and addend bits are equal to 1, the binary sum consists of two digits. The

higher significant bit of this result is called a carry. When the augends and addend

numbers contain more significant digits, the carry obtained from the addition of two

bits is added to the next Higher-order pair of significant bits. A combinational circuit

that performs the addition of two bits is called a (half-adder). One that performs the

addition of three bits (tow significant bits and a previous carry) is a (full-adder). The

name of the former stems from the fact that tow half-adder can be employed to

implement a full-adder.

Half-Adder: From the verbal explanation of a half-adder, we find that this circuit

needs tow binary inputs and tow binary outputs:

B A Carry Sum

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

The carry output is 0 unless both inputs are 1. The sum output represents the least

significant bit of the result.

The Boolean functions for the tow outputs:

𝑆𝑢𝑚 = 𝐴 ⨁ 𝐵 ………… (1)

𝐶𝑎𝑟𝑟𝑦 = 𝐴 ∙ 𝐵 ………… (2)

Figure 4.1 A represent the implementation of the half-adder.

Full-Adder is a combinational circuit that forms the arithmetic sum of three input

bits. It consists of three inputs and two outputs. The third input, Ci, represents the

carry from the previous lower significant position. The truth table of the full-adder is

as follows:

Digital Electronic Circuits Lab. | 10

B A Ci Carry Sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

The full-adder can be implemented with two half-adders and OR gate. The sum

output from the second half-adder is the EX-OR of Ci and the output of the first half-

adder, giving:

𝑆𝑢𝑚 = 𝐶𝑖 ⨁ (𝐴 ⨁ 𝐵)

𝑆𝑢𝑚 = 𝐴𝐵̅𝐶𝑖̅ + 𝐴̅𝐵𝐶𝑖̅ + 𝐴𝐵𝐶𝑖 + 𝐴̅𝐵̅𝐶𝑖̅ ………… (3)

𝐶𝑎𝑟𝑟𝑦 = 𝐴𝐵 + 𝐴𝐶𝑖 + 𝐵𝐶𝑖 ………… (4)

Procedure:

1. Connect the circuit of Figure 4.1 A. Verify its truth-table.

2. Connect the circuit of Figure 4.2 B. Verify its truth-table.

Discussion:

1. Draw the full-adder circuit using NAND gates only.

2. Derive equation (4).

3. Construct a full- adder using half- adder circuit.

4. Construct a binary adder that adds two 5-bit numbers.

Figure 4.1 A

Digital Electronic Circuits Lab. | 11

Figure 4.1 B

Figure 4.2 A

Figure 4.2 B

Digital Electronic Circuits Lab. | 12

Experiment No. 5

Magnitude Comparator

Introduction:

The comparison of two numbers is an operation that determines if one number is

greater than, less than, or equal to the other number. A magnitude comparator is a

combinational circuit that compares two numbers, A and B, and determines their

relative magnitudes. The outcome of the comparison is specified by three binary

variables that indicates whether A > B, A = B or A < B.

The operation of a two one-bit comparator can be described by following truth-

table:

A B E (A = B) G (A > B) L (A < B)

0 0 1 0 0

0 1 0 0 1

1 0 0 1 0

1 1 1 0 0

According to the truth table, the Boolean equation will be as follows:

𝐸 = 𝐴 𝐵 + 𝐴 𝐵 ………… (1)

𝐺 = 𝐴 𝐵 ………… (2)

𝐿 = 𝐴 𝐵 ………… (2)

Equation (1) represents a (2-input) EX-NOR gate, and can be rewritten as:

𝐸 = 𝐴 ⊙ 𝐵 = 𝐴 ⨁ 𝐵 = 𝐴 𝐵 + 𝐴 𝐵 ………… (4)

Therefore, from equation (4), (2), and (3), a 1-bit magnitude comparator logic

circuit can be implemented as shown in Figure 5.1.

Note: MSI IC 7485 is a 4-bit magnitude comparator.

Procedure:

1. Connect the circuit shown in Figure 5.1.

2. Construct the truth-table.

3. Connect the circuit shown in Figure 5.2.

4. Construct the truth-table.

Digital Electronic Circuits Lab. | 13

Discussion:

1. Design a 1-bit magnitude comparator using (NAND) gate only.

2. Design a 3-bit magnitude comparator using (NAND) gates only.

3. Design a 3-bit magnitude comparator using the 7485 IC. Write down its truth-

table.

4. Design an 8-bit magnitude comparator, using the 7485 ICS.

Figure 5.1

Figure 5.2

Digital Electronic Circuits Lab. | 14

Experiment No. 6

Multiplexer and Demultiplexer

Introduction:

 A. Multiplexer (Data Selector):

A multiplexer (MUX) is a device that allows digital information from several

sources to be routed onto a single line for transmission over that line to common

destination. The basic multiplexer, then has several data input lines and a single

output line. It also has data selector inputs that permit digital data on any one of the

inputs to be switched to the output line.

A simple multiplexer can be represented by switch operation that sequentially

connects each of the input lines with the output, as illustrated in Figure 6.1.

Figure 6.1 Simple Multiplexer operation

Assume that we have logic levels, an indicated on three inputs. During time

interval T1, input A is connected to the output; during time interval T2, input B is

connected to the output; during time interval T3, input C is connected to the output.

The logic symbol for 4-input multiplexer is shown in Figure 6.2. Notice that there are

Digital Electronic Circuits Lab. | 15

two selection lines because with two selection bits, each of the four data-input lines

can be selected.

Figure 6.2 Logic symbol for 4-to-1 Data Selector

If a binary 0 (S1 = 0 & S0 = 0) is applied to the data-select lines, the data on input

D0 appears on the output. If a binary 1 (S1 = 0 & S0 = 1) is applied to the data-select

lines, the data on input D1 appears on the output. If a binary 2 (S1 = 1 & S0 = 0) is

applied to the data-select lines, the data on input D2 appears on the output. If a binary

3 (S1 = 1 & S0 = 1) is applied to the data-select lines, the data on input D3 are

switched to the output. A summary of this operation is given in Table 6.1.

Data-Select Inputs
Input Selected

S1 S0

0 0 D0

0 1 D1

1 0 D2

1 1 D3

Table 6.1 Data Selection for a 4- input Multiplexer

The data output Y is equal to the data input D0 if and only if S1 = 0 & S0 = 0: 𝑌 =

𝐷0 ∙ 𝑆1 ∙ 𝑆0

Digital Electronic Circuits Lab. | 16

The data output Y is equal to the data input D1 if and only if S1 = 0 & S0 = 1: 𝑌 =

𝐷1 ∙ 𝑆1 ∙ 𝑆0

The data output Y is equal to the data input D2 if and only if S1 = 1 & S0 = 0: 𝑌 =

𝐷2 ∙ 𝑆1 ∙ 𝑆0

The data output Y is equal to the data input D3 if and only if S1 = 1 & S0 = 1: 𝑌 =

𝐷3 ∙ 𝑆1 ∙ 𝑆0

There terms are (OR), the total expression for the data output is:

𝑌 = 𝐷0 ∙ 𝑆1 ∙ 𝑆0 + 𝐷1 ∙ 𝑆1 ∙ 𝑆0 + 𝐷2 ∙ 𝑆1 ∙ 𝑆0 + 𝐷3 ∙ 𝑆1 ∙ 𝑆0

The implementation of the above equation is shown in Figure 6.3.

Figure 15.3 Logic Diagram for a 4-input multiplexer

 B. Demultiplexer:

A demultiplexer (DMUX) basically reverses the multiplexing function. It takes

data from one line and distributes them to a given number of output lines. Figure 6.4

shows a one-line to four-line demultiplexer circuit.

Digital Electronic Circuits Lab. | 17

Figure 6.4 Logic Symbol 1-to-4 line Demultiplexer

The input data line goes to all AND gates. The two select lines will pass through

the selected gate to the associated output line.

Figure 6.5 shows a 1-line to 4-line demultiplexer circuit. The two select lines

enable only one gate at time, and the data appearing on the input line will pass

through the selected gate to the selected gate to the associated output line.

Figure 6.5 1-to-4 line Demultiplexer

Digital Electronic Circuits Lab. | 18

Procedure:

A. Multiplexer:

1. Connect a circuit of 2-to-1 multiplexer and observe its truth table.

2. Connect a circuit of Figure 15.3 and observe its truth table.

B. Demultiplexer:

 Connect a circuit of Figure 15.5 and observe its truth table.

Discussion:

1. The data input and select waveforms in Figure 6.6 are applied to the multiplexer

in Figure 6.3. Determine the output waveform in relation the input.

 Figure 6.6

2. The serial data input waveform and data selectors are shown in Figure 6.7.

Determine the data-output waveform for the demultiplexer shown in Figure 6.5.

Digital Electronic Circuits Lab. | 19

 Figure 6.7

3. Design 6-to-1 MUX. and verify its truth table.

4. Design 1-to-5 DMUX. and verify its truth table.

Digital Electronic Circuits Lab. | 20

Experiment No. 7

Parity Checker and Generator

Introduction:

Errors can occur as digital codes are being transferred from one point to another

within a digital system or while codes are being transmitted from one system to

another. The errors take the form of undesired changes in the bits that make up the

coded information; that is, a "1" can change to a "0", or a "0" to "1", due to

component malfunction or electrical noise. Many systems, however, employ a parity

bit as a means of detecting a bit error. A parity bit is scheme for detecting errors

during transmission of binary information. An extra bit included with the binary

massage to make the number of 1s either odd or even. The massage including, the

parity bit, is transmitted and then checked at the receiving end for errors. An error is

detected if the checked parity does not correspond to the one transmitted. The circuit

that generates the parity bit in the transmitter is called a parity generator, the circuit

that checks the parity in the receiver is called a parity checker.

The parity of a binary word can be determined with an XOR gates circuit. The

Figure 7.1 shows the parity generator circuit at the transmitter end, and figure 7.2

shows the parity checker circuit at the receiver end.

Figure 7.1 Parity Generator Circuit

Digital Electronic Circuits Lab. | 21

Figure 7.2 Parity Checker Circuit

Figure 7.3 Parity Generator Circuit using NAND Gates

Digital Electronic Circuits Lab. | 22

Procedure:

1. Connect the circuit shown in Figure 7.1.

2. Derive the truth-table.

3. Connect the circuit shown in Figure 7-2. Repeat step (2).

4. Connect the circuit shown in Fig 7.3. Repeat step (2).

Discussion:

1. Write down the Boolean equation for Figure 7.3.

2. Construct a truth-table and add to the binary code, the odd-parity bit. Draw the

logic circuit using NOR gates.

3. Repeat step (2) for NAND gate.

Digital Electronic Circuits Lab. | 23

Experiment No. 8

Binary-to-Gray and Gray-to-Binary Code Convertor

Introduction:

The gray code is an unweighted code not suited to arithmetic operation, but useful

for input – output device, analog-to-digital converters, shaft encoder, and other

peripheral equipment.

Table 8.1 shows the gray code, along with the corresponding binary numbers. The

feature of gray code is that in progressing from one number to the next in sequence

only one of the binary digits (bits) suffers a change.

 Binary Gray

Decimal A B C D X1 X2 X3 X4

0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1

2 0 0 1 0 0 0 1 1

3 0 0 1 1 0 0 1 0

4 0 1 0 0 0 1 1 0

5 0 1 0 1 0 1 1 1

6 0 1 1 0 0 1 0 1

7 0 1 1 1 0 1 0 0

8 1 0 0 0 1 1 0 0

9 1 0 0 1 1 1 0 1

10 1 0 1 0 1 1 1 1

11 1 0 1 1 1 1 1 0

12 1 1 0 0 1 0 1 0

13 1 1 0 1 1 0 1 1

14 1 1 1 0 1 0 0 1

15 1 1 1 1 1 0 0 0

Table 8.1

Sometimes, we have to convert binary numbers into gray code numbers and vice

versa. A Binary- Gray code converter is a device for converting a binary number

applied at its input terminals into the equivalent gray code number at its output

terminals as shown in Figure 8.1.

For instance, in converting from Binary digit (A). Add each pair of adjacent bits to

get next gray digit as follows:

Digital Electronic Circuits Lab. | 24

𝑋1 = 𝐴, 𝑋2 = 𝐴 + 𝐵, 𝑋3 = 𝐵 + 𝐶, 𝑋4 = 𝐶 + 𝐷

And to convert from gray code to binary we use the following formula:

𝐴 = 𝑋1, 𝐵 = 𝐴 + 𝑋2, 𝐶 = 𝐵 + 𝑋3, 𝐷 = 𝐶 + 𝑋4

Figure 8.2 and 8.3 shows a way to build a 4-bits binary-to-Gray and gray-binary

converter by using exclusive-OR circuits.

Procedure:

1. Connect the circuit shown in figure 8.2.

2. Use all combinations of states of switches (A, B, C, and D) to get the data of

table 8.1. Note that the lamps (X1, X2, X3, and X4) display the gray code

number.

3. Re-arrange the circuit connected in step (1) to be as shown in figure 8.3.

The circuit in this case will be a Gray-to-binary converter instead of binary-

to-Gray converter.

4. Use all combinations of states of switches (X1, X2, X3, and X4) to get the

data of table 8.1, and note that lamps (A, B, C and D) display the binary

number.

Discussion:

1. Convert the following gray numbers into binary number:

a) 10101 b) 100110011 c) 00111000100110

2. Convert the following binary numbers into gray number:

a) 1010110 b) 1011001001 c) 10101101110011

3. Draw a logic circuit that converts 10-bits binary numbers into gray code

numbers, use exclusive-OR gates.

4. Draw a logic circuit that converts 10-bits gray numbers into binary numbers,

use exclusive-OR-gates.

Digital Electronic Circuits Lab. | 25

Figure 8.1

Figure 8.2 Binary-to-Gray Convertor

Digital Electronic Circuits Lab. | 26

Figure 8.3 Gray-to-Binary Converter

Digital Electronic Circuits Lab. | 27

Experiment No. 9

Controlled Invertors

Introduction:

Another application of XOR gate is the controlled or programmed inverter. See

Figure 9.1. When the input, control, is low, it transmits the binary word to the output

(unchanged). But when, control, is high it transmits the 1s complement.

Figure 9.1 Controlled Inverter Circuit

Procedure:

1. Connect the circuit shown in Figure 9.1.

2. Derive the truth-table.

Discussion:

1. Construct a controlled inverter circuit using NAND gates only.

2. How many NOR gates do we need to construct a controlled inverter for 48-bit

word.

