University of Salahaddin-Erbil	Subject :Construction Surveying
College of Engineering	Time Allowed : 150 min
Geomatics (Surveying) Engineering Dept.	Examiner : Azad Arshad Hawezi
Date: $15 / 1 / 2023$	

Note ; Round off the results to two digits after the point . or close accuracy to cm only

Question 1) (40mark)

Find h ,h1 ,h2, w1 ,w2 and elevation of catch points A ,B and elevation of top of slope rails ($\mathrm{P}, \mathrm{Q}, \mathrm{S}, \mathrm{T}$) of an Excavation cross section of 1:2 side slope formation level of the road is 393.33 m road width is 12.5 m , the bench mark at left side is 400.05 m ,the staff reading on bench mark was 3.16 m and staff reading on the center line of cross section is 4.87 m , , points P, Q are at left side of center line and points S, T are at right side of center line , points, Q and S are nearest from the sloping stakes at 1 m distance, slope rail horizontal width is 1 m , the traveler is 1.80 m , tolerance is 5 cm , staff reading trials and distances from center line was as follows

Left side		Right side	
Staff reading m	Distance m	Staff reading m	Distance m
4.44	17.15	3.59	18.91
4.80	16.55	4.22	15.55
4.93	16.25	4.53	17.08

Solution :

$\mathrm{HI}=400.05 \mathrm{~m}+3.16 \mathrm{~m}=403.21 \mathrm{~m}$
$\mathrm{d}=\mathrm{HI}$-Formation level $=403.21 \mathrm{~m}-393.33 \mathrm{~m}=9.88 \mathrm{~m}$
$\mathrm{h}=9.88 \mathrm{~m}-4.87 \mathrm{~m}=5.01 \mathrm{~m}$
for left side :
$9.88 \mathrm{~m}-4.44=5.44 \mathrm{~m}$
$5.44 \mathrm{mx} 2+6.25 \mathrm{~m}=17.15 \mathrm{~m}$

$\mathrm{h} 1=5.44 \mathrm{~m}, \mathrm{w} 1=17.13 \mathrm{~m}$ or 17.15 m
for right side :
$9.88 \mathrm{~m}-3.59 \mathrm{~m}=6.29 \mathrm{~m}$
$6.29 \mathrm{~m} \times 2+6.25 \mathrm{~m}=18.91 \mathrm{~m}$

$$
18.83 \mathrm{~m} \quad \neq 18.91 \mathrm{~m}
$$

$9.88 \mathrm{~m}-4.22 \mathrm{~m}=5.66 \mathrm{~m}$

$?$

$5.66 \mathrm{~m} \times 2+6.25 \mathrm{~m}=13.05 \mathrm{~m}$
$15.57 \mathrm{~m}=15.55 \mathrm{~m}$
$\mathrm{h} 2=5.66 \mathrm{~m}, \quad \mathrm{w} 2=15.57 \mathrm{~m}$ or 15.55 m
$\mathrm{A}=403.21 \mathrm{~m}-4.44 \mathrm{~m}=398.77 \mathrm{~m}$
$\mathrm{Q}=398.77 \mathrm{~m}+1 / 2 \mathrm{~m}+1.80 \mathrm{~m}=401.07 \mathrm{~m}$
$\mathrm{P}=398.77 \mathrm{~m}+1 \mathrm{~m}+1.80 \mathrm{~m}=401.57 \mathrm{~m}$
$B=403.21 \mathrm{~m}-4.22 \mathrm{~m}=398.99 \mathrm{~m}$
$\mathrm{S}=398.99 \mathrm{~m}+1 / 2 \mathrm{~m}+1.80 \mathrm{~m}=401.29 \mathrm{~m}$
$\mathrm{T}=398.99 \mathrm{~m}+1 \mathrm{~m}+1.80 \mathrm{~m}=401.79 \mathrm{~m}$

Question 2) (30mark)

Determine the amount of the Cut and the Fill from the top of the curb of 0.15 m above the edge of pavement , pavement width 12 m and gradient -1%. the station and stake elevations are arranged in the following table, the profile gradient is $+1.5 \%$ and elevation of station $0+$ 00 is 397.42 m on the center line .

Station	Stake Elevation m
$0+00$	397.60
$0+10$	397.70
$0+20$	397.65
$0+22.3$	397.80
$0+26.7$	397.90
$0+30$	400.00
$0+40$	400.00
$0+50$	400.00

Solution :

From center line to the edge of the pavement $397.42 \mathrm{~m}-6 / 100=397.36 \mathrm{~m}$
The curb elevation of offset $0+00=397.36+0.15=397.51 \mathrm{~m}$
From station $0+00$ to station $0+10$
For $10 \mathrm{~m}=397.42+10 \mathrm{x} 1.5 / 100=397.57 \mathrm{~m}$

For station $0+22.3 \mathrm{~m}=397.42+22.3 \times 1.5 / 100=397.75 \mathrm{~m}$
For station $0+26.7 \mathrm{~m}=400.50+8.5 \times 2 / 100=397.82 \mathrm{~m}$

Station	Crown m	Edge of the pavement m	Curb elevation m
$0+00$	397.42	397.36	397.51
$0+10$	397.57	397.51	397.66
$0+20$	397.72	397.66	397.81
$0+22.3$	397.75	397.69	397.84
$0+26.7$	397.82	397.76	397.91
$0+30$	397.87	397.81	397.96
$0+40$	400.02	399.96	400.11
$0+50$	400.17	400.11	400.26

Grade Sheet

Station	Curb elevation m	Stake Elevation m	Cut m	Fill m
$0+00$	397.51	397.60	0.09	
$0+10$	397.66	397.70	0.04	
$0+20$	397.81	397.65		0.16
$0+22.3$	397.84	397.80		0.04
$0+26.7$	397.91	397.90		0.01
$0+30$	397.96	400.00	0.04	
$0+40$	400.11	400.00		011
$0+50$	400.26	400.00		0.26

Question 3) (30 mark)
For setting out a curve find the chord distance from point PC to curb curve of length 20 m opposite the 45° deflection angle, take every 3 m distance on the curve, and find the elevation of same stake out points on the top of the curb if the elevation of PC above the curb is 400.46 m and elevation of point PT is under the curve is 400.21 m . curb high is 0.15 m .

Solution:

$\mathrm{L} / 2 \times 22 / 7 \mathrm{R}=\Delta / 360^{\circ} \quad, \quad 20 \mathrm{~m} / 2 \times 22 / 7 \mathrm{R}=45^{\circ} / 360^{\circ}$
$\mathrm{R}=25.46 \mathrm{~m}$
$\Theta / 360^{\circ}=3 \mathrm{~m} / 2 \times 25.46 \mathrm{~m} 22 / 7$
Calculating chord distance from PT and beginning near PC
$\Theta=6^{\circ} .75$
$\mathrm{R}=25.48 \mathrm{~m} \quad \Delta=45^{\circ}$
$\Theta / 2=3^{\circ} .375$

Point	Chord distance (m)
1	2R $\operatorname{Sin}(\Theta) / 2=2.98$
2	2R $\operatorname{Sin}(2 \Theta) / 2=5.99$
3	2R $\operatorname{Sin}(3 \Theta) / 2=8.95$
4	2R $\operatorname{Sin}(4 \Theta) / 2=11.95$
5	2R $\operatorname{Sin}(5 \Theta) / 2=14.78$
6	2R $\operatorname{Sin}(6 \Theta) / 2=17.62$

$400.21+0.15=400.36 \mathrm{~m}$
$400.46 \mathrm{~m}-400.36=0.10 \mathrm{~m}$
$0.10 \mathrm{~m} / 20 \mathrm{~m}=0.005 \mathrm{~m}$ for each meter

Point	Elevation m
PC	400.46
1	$400.46-(0.005 \times 3)=400.445$
2	$400.46-(0.005 \times 6)=400.43$
3	$400.46-(0.005 \times 9)=400.415$
4	$400.46-(0.005 \times 12)=400.40$
5	$400.46-(0.005 \times 15)=400.385$
6	$400.46-(0.005 \times 18)=400.37$
PT	400.36

Practical Part:

Question 1) (50mark) (25+25)
a-For establishing a coordinate system for the following building redraw the map without scale and cover it with 6 control points for data collection consider line alignments between two neighboring control points

2

5
b-In surveying, free stationing (also known as resection) isa method of determining a location of one unknown point in relation to known points.

Question 2) (50mark)

Angle measurement

Page	Soft key	Display mark	
	F1	OSET	Angle of Horizontal is set to $0^{\circ} 00^{\prime} 00^{\prime \prime}$
	F2	HOLD	Hold the horizontal angle
	F3	HSET	Sets a required horizontal angle by entering numerals.
	F4	P1 \downarrow	The function of soft keys is shown on next page (P2).
2	F1	TILT	Setting Tilt Correction If ON, the display shows tilt correction value.
	F2	REP	Repetition angle measurement mode
	F3	V\%	Vertical angle percent grade(\%) mode

Distance measurement mode

Page	Soft key	Display mark	Function
1	F1	MEAS	Start measuring
	F2	MODE	Sets a measuring mode, Fine/Coarse/Tracking
	F3	S/A	Select set audio mode
	F1	OFSET	Select Off-set measurement mode
2	F2	S.O	Select stake out measurement mode

Coordinate measurement mode

Page	Soft key	Display mark	
2	F1	R.HT	Sets a prism height by input values.
	F2	INSHT	Sets an instrument height by input values.
	F3	OCC	Sets an instrument coordinate point by input values.
	F3	m/f/i	Switches meter, feet or feet and inch unit.

