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Abstract 

    This work aims to analyse the dynamic behaviours of the forest pest system. We 

confirm the forest pest system in plane for limit cycles bifurcating existence from a 

Hopf bifurcation under certain conditions by using the first Lyapunov coefficient 

and the second-order of averaging theory. It is shown that all stationary points in this 

system have Hopf bifurcation points and provide an estimation of the bifurcating 

limit cycles. 
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1. Introduction 

     Characterizing the existence of periodic solutions is a classic problem in the qualitative 

theory of real polynomial differential systems. The Hopf bifurcation theorem is the simplest 

requirement for a family of periodic solutions to bifurcate from a known family of stationary 

solutions in a dynamic system. However, in this study, we attempt to examine this 

phenomenon using Hopf bifurcation theory [1, 2]. Moreover, the method of averaging is 

another tool for studying the behaviour of non-linear planer differential systems, especially 

when investigating a periodic solution [3, 4].  

     Two simple age-structured forest pest system have been presented in  [5, 6], which the 

insect pest attacks one of young or old trees. Thus, for the case where the pest feeds on 

undergrowth, it will be investigated that the Hopf bifurcation of the current system after some 

modifications and transforming it to the form below:  

                               
�̇� =  𝑏𝑦 − (𝑦 − 1)2 𝑥 − 𝑎 𝑥 = Р( 𝑥, 𝑦),

�̇� =  𝑥 − 𝑑𝑦 = 𝑄( 𝑥, 𝑦) ,
                                                (1) 

 

      where 𝑥 is the young tree and y is the old tree, 𝑎, 𝑏 and 𝑑 are compound parameters. In [6] 

the authors studied the easiest models of mathematics for non-even-aged forests which can be 

affected by insect pests. Moreover, the authors in [6] used analytical methods such as the 

bifurcation theory and the numerical methods to study qualitative behaviours and dynamics of 

non-linear forest pest systems. For more information and details about the system, we refer to 

these references [7, 8, 9, 10, 11, 12, 13, 14] and references therein. Using the Hopf bifurcation 

theorem will be considered for finding the limit cycle (isolated closed orbits) of the forest pest 

system using the first Lyapunov coefficient and averaging theory of the first order and the 

second order. 

The rest of this paper falls into these sections. In Section 2, basic definitions and results that 

are needed for this paper are introduced. In Section 3, the local stability of stationary points is 

discussed, as well as we prove that the system (1) has no limit cycles for some particular 

cases. In Section 4, we study Hopf bifurcations by using the first Lyapunov coefficient and 

first and second order of averaging theory, the direction of Hopf bifurcation and bifurcating 

periodic solutions stability are completely studied with numerical examples. Finally, 

conclusions of the paper are given. 

 

2. Some basic definitions  

2.1 The first Lyapunov coefficient  
      To begin our analytical investigation, we first recall some basic analytic facts form 

dynamical theory, for more details see [1]. 

        Let Ϲ𝑛  be  a linear space that can be well-defined on the complex number field Ϲ. The 

scalar 〈𝑥, 𝑦〉 for all  𝑥, 𝑦 ∈ Ϲ𝑛 satisfies the following properties:   

1.  〈 𝑥, 𝑦 〉 =  〈 𝑦, 𝑥 〉̅̅ ̅̅ ̅̅ ̅̅ , where 〈𝑥, 𝑦〉  = �̅�𝑇𝑦 = ∑  𝑥 𝑖̅̅ ̅̅  𝑦𝑖
𝑛
𝑖=1 , 

2.  〈 𝑥, 𝛼𝑦 + 𝛽𝑧 〉 =  𝛼〈 𝑥, 𝑦 〉 + 𝛽〈𝑥, 𝑧〉, for each 𝛼, 𝛽 ∈ Ϲ, and 𝑥, 𝑦, 𝑧 ∈ Ϲ𝑛, 

3.  〈 𝑥, 𝑥 〉  ≥ 0 and 〈 𝑥, 𝑥 〉  = 0 ⇔ 𝑥 = 0. 

If one introduces the norm ||𝑥|| = √〈 𝑥, 𝑥 〉 in Ϲ𝑛, then the space Ϲ𝑛 becomes Hilbert space. 

Now, a review of the projection method is described in [1, 2] for the calculation of the first 

Lyapunov coefficient associated with Hopf bifurcation. 

Assume that the following continuous-time dynamical system   

                     �̇� = 𝐴 𝑥 + Ɲ(𝑥),     𝐴 = (𝑎𝑖𝑗)𝑛×𝑛 ,       𝑥 ∈ ℝ𝑛,                                            (2) 

 

       where 𝑁(𝑥) = 𝛰(||𝑥||2) is smooth function. Suppose that Ɲ(𝑥) is written as  

                  Ɲ(𝑥) =
1

2
Ɓ(𝑥, 𝑥) +

1

6
Ϲ(𝑥, 𝑥, 𝑥) + 𝛰(||𝑥||4),                                               (3) 
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that Ɓ( 𝑥, 𝑦) and Ϲ( 𝑥, 𝑦, 𝑧) are bilinear and trilinear functions. In coordinates, we have 

         Ɓ𝑖(𝑥, 𝑦) = ∑
𝜕2Ɲ𝑖(𝜉)

𝜕𝜉𝑗𝜕𝜉𝑘
|

𝜉=0

 𝑥𝑗𝑦𝑘
𝑛
𝑗,𝑘=1 ,    Ϲ𝑖(𝑥, 𝑦, 𝑧) = ∑

𝜕3Ɲ𝑖(𝜉)

𝜕𝜉𝑗𝜕𝜉𝑘𝜕𝜉𝑙
|

𝜉=0

 𝑥𝑗𝑦𝑘𝑧𝑙
𝑛
𝑗,𝑘,𝑙=1 .        (4)                     

 

       Suppose that 𝐴 contains two complex eigenvalues on the imaginary axis: 𝜆1,2 =
±𝑖𝜔(𝜔 > 0), and these eigenvalues are the only eigenvalues with 𝑅𝑒(𝜆) = 0. Suppose that 

𝑞 𝜖 Ϲ𝑛 be a complex eigenvector corresponding to 𝜆1 = 𝑖𝜔: 

                              𝐴𝑞 = 𝑖⍵ 𝑞,         𝐴 �̅� = −𝑖⍵�̅�.                                                  (5) 

Include the adjoint eigenvector as well p 𝜖 Ϲ𝑛 admitting the properties: 

                             𝐴T𝑝 = −𝑖⍵𝑝,         𝐴T�̅� = 𝑖⍵�̅�,                                                  (6) 

and satisfying the normalization 〈 𝑝, q 〉 = 1. The first Lyapunov coefficient at the origin is 

defined as  

                         ℓ1(0) =
1

2⍵2
𝑅𝑒(𝑖 𝑔20 𝑔11 + ⍵𝑔21),                                      (7) 

where 

               𝑔20 = 〈 𝑝, Ɓ(𝑞, 𝑞) 〉 ,  𝑔11 = 〈 𝑝, Ɓ(𝑞, �̅�) 〉 , 𝑔21 = 〈 𝑝, 𝐶(𝑞, 𝑞, �̅�) 〉 . 
We know ℓ1(0) < 0 (ℓ1(0) > 0), the Hopf bifurcation is supercritical (subcritical), 

respectively. 

 

2.2 Averaging theory of first and second order 

      A summary of essential results concerning the averaging theory that is needed for proving 

the existence of periodic solutions for the system is presented (1). We can see [3] for further 

reading on averaging theory.  

 

Theorem 1. Consider the differential equation 

                                               �̇� = 𝜀𝑓0.1 + 𝜀2 𝑓0.2 + 𝜀3𝘔(𝑡, 𝑥, 𝜀),                                     (8) 

where  𝑓0.1,  𝑓0.2: ℝ × Ʋ → ℝ𝑛, 𝘔: ℝ × Ʋ × (−𝜀ƒ, 𝜀ƒ) → ℝ𝑛 are continuous functions, 𝑇-

periodic in 𝑡 (𝑇 is independent of 𝜀) and Ʋ ⊂ ℝ𝑛 is an open subset. Suppose that the 

following hypotheses  

a.  𝑓0.1(𝑡, . ) ∈ Ϲ1(Ʋ) for all  𝑡 ∈ ℝ,  𝑓0.1,  𝑓0.2𝑎𝑛𝑑 𝘔  are locally Lipschitz with respect to 𝑥. 

The function 𝘔 is twice differentiable with respect to 𝑥. 
b. Define ℱ0𝑖: Ʋ → ℝ𝑛 for 𝑖 = 1,2 by 

ℱ01 =
1

T
∫ 𝑓0.1

T

0

(𝑠, ȥ)𝑑𝑠, 

ℱ02 =
1

T
∫ [𝑓0.2(𝑠, ȥ) + 𝐷ȥ 𝑓0.1(𝑠, ȥ)  ∫ 𝑓0.1(𝑡, ȥ)

𝑠

0

𝑑𝑡] 𝑑𝑠,
T

0

  

 

where  𝐷ȥ𝑓0.1 is the Jacobian determinant matrix of components of 𝑓0.1 with respect to ȥ. 

c. For 𝑉 bounded and an open set in Ʋ, for 𝜀 ∈ (−𝜀ƒ, 𝜀ƒ)\{0} there is 𝑟𝜀 ∈ 𝑉 such that 

ℱ01 + 𝜀ℱ02 = 0 and 𝑑Ɓ(ℱ01 + 𝜀ℱ02) ≠ 0.  
Then, for |𝜀| > 0 is sufficiently small, there exists a 𝑇-periodic solution 𝜙(𝑡, 𝜀) of the system 

such that 𝜙(𝑡, 𝜀) → 𝑟𝜀 as 𝜀 → 0. Moreover, the stability of the periodic solution 𝜙(𝑡, 𝜀) is 

given by the stability of the stationary point 𝑟. 

 

      The term 𝑑Ɓ(ℱ01 + 𝜀ℱ02) ≠ 0 denotes the Brouwer degree of the function ℱ01 +
𝜀ℱ02: 𝑉 → ℝ𝑛 at its stationary point 𝑟 which is not zero. Inequality is true when a sufficient 

condition of function’s Jacobian (ℱ01 + 𝜀ℱ02) at 𝑟𝜀 is not to be zero. 
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If  ℱ01 ≠ 0, then the zeros of ℱ01 + 𝜀ℱ02 are mainly the zeros of  ℱ01 for 𝜀 sufficiently small. 

In this situation, we have the method of averaging of the first order. If  ℱ01 is identical to zero 

and  ℱ02 ≠ 0, then the zeros of ℱ01 + 𝜀ℱ02 are the zeros of  ℱ02 for 𝜀 sufficiently small. In 

this case, we have the method of averaging of the second order.  

For other applications of averaging theory to the study limit cycles for systems, see for 

instance [3, 15]. 

 

 

 

 

3. Dynamical Analysis of the Forest Pest System and non-existence of Limit Cycles 

3.1 Stability analysis and stationary points of the forest pest system 

      The stability analysis and persistence of system (1) are investigated. That is simple to get 

the system has only one isolated stationary point 𝛦0(0,0), if 𝑑 ≠ 0, 𝑑(𝑏 − 𝑎𝑑) < 0; and if 

𝑑 ≠ 0, 𝑑(𝑏 − 𝑎𝑑) > 0, it has three isolated stationary points 𝛦0(0,0) and 𝛦1,2(𝑥0, 𝑦0), 

where 𝑥0 = 𝑑 ∓ √𝑑(𝑏 − 𝑎𝑑), 𝑦0 =
𝑥0

𝑑
.  The analysis of the corresponding linearized system 

is concentrated on determining the local stability of these stationary points. The Jacobian 

matrix of system (1) at the point 𝐸(𝑥, 𝑦) is computed as: 

 

Case 1: Stationary point at 𝑬𝟎(𝟎, 𝟎) 

The system (1) at 𝐸0(0,0), the Jacobian matrix is  

𝐽0 = [
−(𝑎 + 1) 𝑏

1 −𝑑
]. 

The characteristic equation of Ј0 is 

                                                                    𝜆2 − 𝜆Т + D = 0,                                            (9) 

where 

Т = 𝑡𝑟(𝐽0) = −(𝑎 + 𝑑 + 1)   and   𝐷 = det(𝐽0) = 𝑑(𝑎 + 1) − 𝑏. 
The Jacobian of system (1) has the corresponding eigenvalues, linearized at (0, 0), they are: 

𝜆1,2 = (−(𝑎 + 𝑑 + 1) ∓ √(𝑎 − 𝑑 + 1)2 + 4𝑏) /2. 

According to Eq. (9), we have the following conclusions: 

I.If  𝑑(𝑎 + 1) < 𝑏, then the stationary point 𝐸0(0,0) is saddle point. 

II.If  −
(𝑎−𝑑+1)2

4
< 𝑏 < 𝑑(𝑎 + 1) and  −(𝑎 + 𝑑) > 1, then the stationary point 𝐸0(0,0) is 

unstable node point. 

III.If  −
(𝑎−𝑑+1)2

4
< 𝑏 < 𝑑(𝑎 + 1) and −(𝑎 + 𝑑) < 1, then the stationary point 𝐸0(0,0) is 

stable node point.  

IV.If  −
(𝑎−𝑑+1)2

4
> 𝑏 and −(𝑎 + 𝑑) > 1, then the stationary point 𝐸0(0,0) is unstable focus 

point. 

V.If  −
(𝑎−𝑑+1)2

4
> 𝑏 and −(𝑎 + 𝑑) < 1, then the stationary point 𝐸0(0,0) is stable focus 

point. 

VI.If  𝑏 = −
(𝑎−𝑑+1)2

4
 and 𝑎 ≠ −(𝑑 + 1), then the 𝐸0(0,0) is either unstable improper node if 

(𝑎 + 𝑑 + 1) < 0 or stable improper node if (𝑎 + 𝑑 + 1) > 0.  

 

Remark1: Since the arguments of the stationary points 𝐸1 and 𝐸2 are very similar, we only 

use the stationary point 𝐸1 throughout this paper. 

 

Case 2. Stationary point at 𝑬𝟏 



Othman and Amen                                  Iraqi Journal of Science, 2022, Vol. 63, No. 12, pp: 5496-5509 
 

5500 

Now, we move the stationary point 𝐸1 of system (1) to the origin under the following 

transformation,  

     {
 𝑥1 = 𝑥 − 𝑥0,
𝑦1 = 𝑦 − 𝑦0,  

this transforms the system (1) into the variant below: 

 𝑥1̇ = −
𝑏

𝑑
𝑥1 + (2𝑎𝑑 − 𝑏 − 2√𝑑(𝑏 − 𝑎𝑑)) 𝑦1 −

2√𝑑(𝑏−𝑎𝑑)

𝑑
𝑥1𝑦1 − 𝑥1𝑦1

2 − (𝑑 + √𝑑(𝑏 − 𝑎𝑑)) 𝑦1
2,

𝑦1̇ = 𝑥1 − 𝑑𝑦1.
(10)  

The Jacobian matrix for system (10) at 𝐸1 is given by 

𝐽𝐸1
= [−

𝑏

𝑑
2𝑎𝑑 − 𝑏 − 2√𝑑(𝑏 − 𝑎𝑑)

1 −𝑑

]. 

The characteristic equation of 𝐽𝐸1
 is 

                                    𝜆2 + (𝑑 +
𝑏

𝑑
) 𝜆 + 2 (𝑏 − 𝑎𝑑 + √𝑑(𝑏 − 𝑎𝑑)) = 0.                           (11) 

According to Routh-Hurwitz criteria [16] all roots of eq.(11) have negative real part if and 

only if  (𝑑 +
𝑏

𝑑
) > 0 and  (𝑏 − 𝑎𝑑 + √𝑑(𝑏 − 𝑎𝑑)) > 0.For the system (10) if (𝑑 +

𝑏

𝑑
) > 0 

and (𝑏 − 𝑎𝑑 + √𝑑(𝑏 − 𝑎𝑑)) > 0, then 𝐸1 is asymptotically stable. 

 

3.2 Non-existence limit cycles 

First, the Bendixson-Dulac criteria are used to investigate the non-existence of limit cycles in 

system (1). For more details see [17]. 

 

Proposition 2. (i) If  𝑎 + 𝑑 = 0, or  𝑎, 𝑑 > 0, then the system (1) has no limit cycles. 

(ii) If  𝑏 > 0, then the system (1) has no limit cycles in a region 𝐷 = {(𝑥, 𝑦): 𝑥𝑦 ≠ 0}. 

 

Proof: We find that the divergence of system (1) is  

div(Р, 𝑄) =
𝜕Р

𝜕𝑥
+

𝜕𝑄

𝜕𝑦
= −𝑎 − 𝑑 − (𝑦 − 1)2. 

If 𝑎 + 𝑑 = 0 or 𝑎, 𝑑 > 0, we obtain that sign div(Р, 𝑄) < 0, by Bendixson’s criterion  [18]. 

Then, it cannot be limit cycles of the system (1) contained within plane. 

 

(ii) Construct the Dulac function as follows  Ɓ(𝑥, 𝑦) =
1

 𝑥𝑦
  , then we have  

div(ƁР, Ɓ𝑄) =
𝜕(ƁР)

𝜕𝑥
+

𝜕(Ɓ𝑄)

𝜕𝑦
= −

 𝑥2 + 𝑏𝑦2

 𝑥2𝑦2
< 0. 

Also, if 𝑏 > 0, we have sign div(Р, 𝑄) < 0 ,so that by the Dulac Theorem  [18] the system (1) 

has no limit cycles in 𝐷.  ▭ 

 

4. Hopf Bifurcation of forest pest system 

4.1 Hopf bifurcation analysis by the first Lyapunov coefficient 

We now show that the system (1) has limit cycles arising from Hopf bifurcation. 

 

Proposition 3: The forest pest system (1) at the origin stationary point with eigenvalues ±𝑖𝜔, 
𝜔 ∈ ℝ+if and only if 𝑑 = 𝑑ℎ = −(𝑎 + 1) and 𝑏 = −(𝑎 + 1)2 − 𝜔2, where (𝑎 + 1)2 + 𝑏 <

0. Also, in the Eq. (9), which satisfy (
𝑑𝑅𝑒(𝜆(𝑑))

𝑑(𝑑)
)

𝑑=𝑑ℎ

=
1

2
≠ 0, then the forest pest system (1) 

displays a Hopf bifurcation. 

 

Proof: At the origin point the characteristic polynomial of the linear part of the forest pest 

system (1) is  
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𝑃(𝜆) = 𝜆2 + (𝑎 + 𝑑 + 1)𝜆 + 𝑑(𝑎 + 1) − 𝑏. 
In order to have a Hopf stationary point, we impose that 𝑃(𝜆) = 𝜆2 + 𝜔2  ,so we obtain the 

system 

𝑎 + 𝑑 + 1 = 0,       𝜔2 = 𝑑(𝑎 + 1) − 𝑏.   
When 𝑑 = 𝑑ℎ = −(𝑎 + 1), the Eq. (9) at the point 𝐸0(0,0) can be rewritten into  

                                      𝜆2 − ((𝑎 + 1)2 + 𝑏) = 0.                                                                        (12) 

Clearly, the Eq. (12) has a pair of purely imaginary conjugate roots, namely  λ1,2 = ∓iω, 

when ω = √−(𝑎 + 1)2 − 𝑏,  where ((𝑎 + 1)2 + 𝑏 < 0). 

Let 𝜆 = 𝜆(𝑑), we define the following relation from the characteristic Eq. (9) 

𝑓(𝜆(𝑑), 𝑑) = 𝜆(𝑑)2 − 𝜆(𝑑)𝑇 + D = 0.                                                                        (13) 

Differentiation of (13) with respect to 𝑑 yields, 

                                                         
𝜕𝑓

𝜕𝜆
 

𝑑𝜆

𝑑(𝑑)
+

𝜕𝑓

𝜕𝑑
= 0.            

We can obtain 

𝑑𝜆(𝑑)

𝑑(𝑑)
= −

𝜕𝑓

𝜕𝑑
(

𝜕𝑓

𝜕𝜆
)

−1

= −
𝜆 + 𝑎 + 1

2𝜆 + 𝑎 + 𝑑 + 1
.                                                 (14) 

Taking the root 𝜆(𝑑) = 𝑖𝜔, evaluating 𝑑 = 𝑑ℎ, and substituting it into (14), we have 

(
𝑑𝑅𝑒(𝜆(𝑑))

𝑑(𝑑)
)

𝑑=𝑑ℎ

= −
1

2
≠ 0 .                                                                     (15) 

Obviously, the first two conditions of Hорf bifurcation are satisfied so that the Hopf 

bifurcation theorem holds. Therefore, by Guckenheimer and Holmes [19], we know that 

system (1) undergoes a Hopf bifurcation in stationary point at 𝐸0(0,0) when 𝑑 = 𝑑ℎ. ▭ 

 

Theorem 4: If the conditions of Proposition 3 hold and 𝑎2 + 2𝑎 + 𝑏 + 1 < 0, then the first 

Lyapunov coefficient of system (1) at stationary point 𝐸0(0,0) is given by  

ℓ1(0) =
𝑎2−2𝑎+𝑏−3

2√(−𝑎2−2𝑎−𝑏−1)3
, 

when 𝑎 ≥ −1, we have ℓ1(0) < 0, so the Hopf bifurcation at 𝐸0(0,0) is supercritical. 

Whereas, when 𝑎2 − 2𝑎 + 𝑏 > 3, we have ℓ1(0) > 0, therefore the Hopf bifurcation at 

𝐸0(0,0) is subcritical. 

 

Proof: The Jacobian matrix 𝐴 for system (1) at 𝐸0(0,0) when 𝑑 = −(𝑎 + 1), we can write in 

the form  

                                                𝐴 = [
−(𝑎 + 1) 𝑏

1 𝑎 + 1
].                                                    (16) 

Suppose that 𝑞 𝜖 ℂ2 is an eigenvector of matrix 𝐴 corresponding to the eigenvalues. Also, let 

𝑝 𝜖 ℂ2 be an eigenvector of the transposed matrix 𝐴𝑇 corresponding to conjugate eigenvalues.   

We derive the four vectors via tedious calculations, 

                

𝑞 = (
−(𝑎 + 1) + 𝑖 𝜔

1
),    �̅� = (

−(𝑎 + 1) − 𝑖 𝜔
1

) ,

p =
1

−2𝑖𝜔
(

1
(𝑎 + 1) − 𝑖 𝜔

) , p̅ =
1

2𝑖𝜔
(

1
(𝑎 + 1) + 𝑖 𝜔

) ,
                                (17) 

Where �̅� is the conjugate vector of 𝑞. Which satisfies 

       𝐴𝑞 = 𝑖𝜔ԛ,             𝐴𝑇𝑝 = −𝑖𝜔𝑝,           and    , 〈 𝑝, 𝑞 〉 = 1 .                                       (18) 

 

       In system (1) there will be bilinear and trilinear functions. Then, the Ɓ(𝜉, 𝜂),and 

𝐶(𝜉, 𝜂, 𝜁) define planar vectors  

 𝜉 = (𝜉1, 𝜉2)T ∈ ℝ2, 𝜂 = (𝜂1, 𝜂2)T ∈ ℝ2, and 𝜁 = (𝜁1, 𝜁2)T ∈ ℝ2, the values 
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          Ɓ(𝜉, 𝜂) = (
2(𝜉1𝜂2 + 𝜂1𝜉2)

0
),  𝐶(𝜉, 𝜂, 𝜁) = (

−2(𝜉1𝜂2𝜁2 + 𝜉2𝜂2𝜁1 + 𝜉2𝜂1𝜁2)
0

).         (19) 

From (16), (17) and (19), the straightforward and tedious calculation yields 

𝑔20 =  〈𝑝, Ɓ(𝑞, 𝑞) 〉  =
2(𝜔+𝑖(𝑎+1))

𝜔
,  𝑔11 = < 𝑝, Ɓ(𝑞, �̅�) > =

2𝑖(𝑎+1)

𝜔
, 

𝑔21 =  〈 𝑝, 𝐶(𝑞, 𝑞, �̅�) 〉  = −
𝜔 + 3𝑖(1 + 𝑎)

𝜔
  . 

       The substitution of 𝑔20, 𝑔11 and 𝑔21 into the first Lyapunov coefficient ℓ1(0) in Eq. 

(7), we obtain 

ℓ1(0) =
1

2𝜔2 𝑅𝑒(𝑖 𝑔20𝑔11 + 𝜔𝑔21) =
𝑎2−2𝑎+𝑏−3

2√(−𝑎2−2𝑎−𝑏−1)3
 .  

From the first Lyapunov coefficient ℓ1(0), since 𝑎2 + 2𝑎 + 1 + 𝑏 < 0, then 𝑎2 − 2𝑎 + 𝑏 −
3 < −4𝑎 − 4 . 

Then, if 𝑎 ≥ −1, we have ℓ1(0) < 0, the Hopf bifurcation is supercritical. Although, when 

𝑎2 − 2𝑎 + 𝑏 > 3, we have ℓ1(0) > 0, the Hopf bifurcation is subcritical. ▭ 

From Theorem 4, we should be noted that there are possible results where the first Lyapunov 

coefficient will not provide outcomes, this means that ℓ1(0) = 0, the Hopf bifurcation is 

degenerate, when 

(I) 𝑏 = −𝑎2 + 2𝑎 + 3. 

 

        In the previous case the higher-order Lyapunov’s coefficient would be necessary to 

describe the existence of a periodic solution rising from stationary point 𝐸0(0,0) .  
The Hopf bifurcation at 𝐸1 occurs, and the stability of 𝐸1 depends on the value of the first 

Lyapunov coefficient ℓ1. We have the next Proposition. 

 

Proposition 5: The forest pest system (10) at 𝐸1(0,0) stationary point with eigenvalues ±𝑖𝜔, 

𝜔 ∈ ℝ+,if and only if 𝑏 = 𝑏ℎ = −𝑑2, 𝜔2 = 2 (−𝑏 − 𝑎𝑑 + √𝑑(𝑏 − 𝑎𝑑)), such that 

(2 (−𝑑(𝑎 +  𝑑 ) + √−𝑑2(𝑎 +  𝑑))) > 0, 𝑎𝑛𝑑 (𝑎 +  𝑑) < 0. Also, in the Eq. (11), which 

satisfy (
𝑑𝑅𝑒(𝜆+(𝑏))

𝑑(𝑏)
)

𝑏=𝑏ℎ

=
−1

2𝑑
≠ 0, then the forest pest system (1) displays a Hopf bifurcation. 

 

Proof: At the 𝐸1 point the characteristic polynomial of the linear part of the forest pest system 

(1) is  

𝑃(𝜆) = 𝜆2 + (𝑑 +
𝑏

𝑑
) 𝜆 + 2(𝑏 − 𝑎𝑑 + √𝑑(𝑏 − 𝑎𝑑)). 

In order to have a Hopf stationary point, we impose that 𝑃(𝜆) = 𝜆2 + 𝜔2 ,we obtain the 

system 

(𝑑 +
𝑏

𝑑
) = 0,       𝜔2 = 2(𝑏 − 𝑎𝑑 + √𝑑(𝑏 − 𝑎𝑑)).   

 When 𝑏 = 𝑏ℎ, the Eq. (11) at the point 𝐸1 can be rewritten into  

𝜆2 + (2(−𝑑( 𝑎 +  𝑑) + √−𝑑2( 𝑎 +  𝑑))) = 0. 
Clearly, Eq. (11) contains two purely imaginary conjugate roots,  λ1,2 = ∓iω, when ω =

√2(−𝑑(𝑎 +  𝑑) + √−𝑑2( 𝑎 +  𝑑)), (2 (−𝑑( 𝑎 +  𝑑) + √−𝑑2(𝑎 + 𝑑)) > 0). 

Let 𝜆 = 𝜆(𝑏), define the relation from the characteristic Eq. (11) 

         𝑓(𝜆(𝑏), 𝑏) = 𝜆(𝑏)2 + ((𝑑 +
𝑏

𝑑
)) 𝜆(𝑏) + 2(𝑏 − 𝑎𝑑 + √−𝑑(𝑏 − 𝑎𝑑)) = 0.               (20) 

Differentiation of (20) with respect to 𝑏 yields, 
𝜕𝑓

𝜕𝜆
 

𝑑𝜆

𝑑(𝑏)
+

𝜕𝑓

𝜕𝑏
= 0. 
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We can obtain 

𝑑𝜆(𝑏)

𝑑(𝑏)
= −

𝜕𝑓

𝜕𝑏
(

𝜕𝑓

𝜕𝜆
)

−1

= −
𝜆√𝑑(𝑏 − 𝑎𝑑) + 2𝑑√𝑑(𝑏 − 𝑎𝑑) + 𝑑2

(2𝑑𝜆 + 𝑑2 + 𝑏)√𝑑(𝑏 − 𝑎𝑑)
.          (21) 

Taking the root 𝜆(𝑏) = 𝜆+(𝑏) = 𝑖𝜔, evaluating 𝑏 = 𝑏ℎ, and substituting it into (21), we have 

(
𝑑𝑅𝑒(𝜆+(𝑏))

𝑑(𝑏)
)

𝑏=𝑏ℎ

=
−1

2𝑑
≠ 0 .                                                                          (22) 

Obviously, the first two conditions of Hорf bifurcation are fulfilled, and the Hopf bifurcation 

theorem holds. Therefore, by Guckenheimer and Holmes [19], we know that system (1) 

undergoes a Hopf bifurcation at stationary point at 𝐸1 when 𝑏 = 𝑏ℎ. ▭ 

 

Theorem 6: If the conditions of Proposition 5 hold, then the first Lyapunov coefficient of 

system at stationary point 𝐸1 satisfying 𝑏 = 𝑏ℎ  is given by  

ℓ1(0) =
−2𝑑(𝑎+ 𝑑)

𝜔3 ≠ 0, 

when 𝑑 < 0, we have ℓ1(0) < 0, so the Hopf bifurcation at 𝐸1 is nondegenerate and 

supercritical. Although, 𝑑 > 0, we have ℓ1(0) > 0, consequently the Hopf bifurcation at 𝐸1 is 

nondegenerate and subcritical. 

 

Proof: The Jacobian matrix 𝐴 for system (10) at 𝐸1 when 𝑏 = −𝑑2, we can write in the form  

                                                𝐴 = [𝑑 2𝑎𝑑 + 𝑑 − √−𝑑2(𝑎 + 𝑑)

1 −𝑑
].                                   (23) 

Suppose that 𝑞 𝜖 ℂ2 is an eigenvector of matrix 𝐴 corresponding to eigenvalues. Also, let 

𝑝 𝜖 ℂ2 be an eigenvector of the transposed matrix 𝐴𝑇 corresponding to conjugate eigenvalues.   

We derive the four vectors via tedious calculations, 

𝑞 = (
𝑑 + 𝑖 𝜔

1
),    �̅� = (

𝑑 − 𝑖 𝜔
1

) ,      p =
1

−2𝑖𝜔
(

1
−𝑑 − 𝑖 𝜔

) , p̅ =
1

2𝑖𝜔
(

1
−𝑑 + 𝑖 𝜔

),             (24)                                                                     

 

Where �̅� is the conjugate vector of 𝑞. Which satisfies 

                𝐴𝑞 = 𝑖𝜔ԛ,             𝐴𝑇p = −𝑖𝜔p,           and    , 〈 𝑝, 𝑞 〉 = 1 .                                    (25) 

 

In the system (10) there will be bilinear and trilinear functions. Then, the Ɓ(𝜉, 𝜂),and 

𝐶(𝜉, 𝜂, 𝜁) define planar vectors  

𝜉 = (𝜉1, 𝜉2)Т ∈ ℝ2, 𝜂 = (𝜂1, 𝜂2)Т ∈ ℝ2, and 𝜁 = (𝜁1, 𝜁2)Т ∈ ℝ2, the values    

Ɓ(𝜉, 𝜂) = (−2 (
√−𝑑2(𝑎 +  𝑑)

𝑑
(𝑑 𝜉2𝜂2 + 𝜂2𝜉1 + 𝜂1𝜉2) + 𝑑𝜉2𝜂2)

0

) ,

𝐶(𝜉, 𝜂, 𝜁) = (
−2(𝜉1𝜂2𝜁2 + 𝜉2𝜂2𝜁1 + 𝜉2𝜂1𝜁2)

0
) .

                               (26) 

From (23), (24) and (26), the straightforward and tedious calculation yields 

𝑔20 =  〈 𝑝, Ɓ(𝑞, 𝑞) 〉  = −
2√−𝑑2( 𝑎+ 𝑑)

Ԁ
+ 𝑖 (

(𝑑+3√−𝑑2( 𝑎+ 𝑑))

𝜔
),  

 𝑔11 =  〈 𝑝, Ɓ(𝑞, �̅�) 〉  =
𝑖(𝑑+3√−Ԁ2( 𝑎+ 𝑑))

𝜔
, 

𝑔21 =  〈 𝑝, 𝐶(𝑞, 𝑞, �̅�) 〉  = −
𝜔 − 3𝑖𝑑

𝜔
. 

       The substitution of 𝑔20, 𝑔11 and 𝑔21 in to the first Lyapunov coefficient ℓ1(0) in Eq. 

(7), we obtain 

ℓ1(0) =
1

2𝜔2 𝑅𝑒(𝑖 𝑔20𝑔11 + 𝜔𝑔21) = −
2𝑑( 𝑎+𝑑)

𝜔3  .  
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From the above ℓ1(0), must be ( 𝑎 +  𝑑) < 0 and 𝜔 > 0. 
Hence, when 𝑑 > 0, we have ℓ1(𝑏ℎ) > 0 , so the Hopf bifurcation is nondegenerate and 

subcritical. while, when 𝑑 < 0, we have ℓ1(𝑏ℎ) < 0, so the Hopf bifurcation is nondegenerate 

and supercritical.  ▭ 
 

4.2 Numerical results on Hopf bifurcation 

       We give examples for the stationary point 𝐸0(0,0) about phase portrait forest pest system 

(1), respectively. Firstly, according to Theorem 4, for the Hopf bifurcation at the stationary 

point at 𝐸0(0,0), we fix 𝑎 = −0.2 and 𝑏 = −5,  so that 𝑑0 = −0.9 with initial 

conditions  𝑥(0) = 0.01 𝑎𝑛𝑑  𝑦(0) = 0.3. Likewise, ℓ1(0) = −0.4541365201 < 0, then the 

Hopf bifurcation is supercritical. Here, we see that it is unstable when 𝑑 = −0.7 > −0.9 =
𝑑0. While, 𝑑 = −1.1 < −0.9 = 𝑑0. Therefore, stable limit cycles yield, the result is shown in 

Figure 1. 

Secondly, according to Theorem 6 for the Hopf bifurcation at the stationary point at 𝐸1  we fix 

𝑎 = −2 and 𝑑 = 1,  so that 𝑏0 = −1 with initial conditions 𝑥(0) = 𝑦(0) = 0.3. Also, 

ℓ1(0) = 0.25 > 0, then the Hopf bifurcation is subcritical. Here, we see that it is stable when 

= −1.3 < −1 = 𝑏0 . While, 𝑏 = −0.8 > −1 = 𝑏0   unstable limit cycles yields, the result is 

shown in Figure 2. 

  

 
(i)                                                                     (ii) 

Figure 1: Phase portraits of system (1) at the stationary point at 𝐸0(0,0), we fix 𝑎 = −0.2, 
and 𝑏 = −5. (i) 𝑑 > 𝑑0 and (ii) 𝑑 < 𝑑0. 

 
                         (i)                                                                        (ii)  

Figure 2: Phase portraits of system (1) at the stationary point at 𝐸1, we fix  𝑎 = −2, and 

𝑑 = 1. (i) 𝑏 > 𝑏0 and (ii) 𝑏 < 𝑏0. 



Othman and Amen                                  Iraqi Journal of Science, 2022, Vol. 63, No. 12, pp: 5496-5509 
 

5505 

 

4.3 Hopf bifurcation analysis by Averaging theory 

      In the next results, we show that the averaging method can be used to find sufficient 

conditions on parameters of the system (1) has a limit cycles. 

 

Theorem 7: Consider the forest pest system (1), if 𝑑 = −(𝑎 + 1) + 𝜀 𝑑1 + 𝜀2𝑑2 and 

𝑏 = −(𝑎 + 1)2 − 𝜔2 with 𝜔 > 0,
𝑑2

𝜔2+4𝑎+4
< 0, with 𝜀 > 0 is a sufficiently small parameter. 

Via averaging theory of second-order has one limit cycle bifurcating from the Hopf stationary 

point at the origin. The limit cycle is stable if 𝑑2 < 0 and unstable if 𝑑2 > 0. 

 

Proof: Let the parameters for perturbations (𝑏, 𝑑) = (−(𝑎 + 1)2 − 𝜔2, −(𝑎 + 1) + 𝜀 𝑑1 +
𝜀2𝑑2), then the forest pest system (1) becomes 

                                 �̇� = −(𝑎 + 1) 𝑥 − ((𝑎 + 1)2 + 𝜔2)𝑦 + 2 𝑥𝑦 −  𝑥𝑦2,

�̇� = 𝑥 + (𝑎 − 𝜀𝑑1 − 𝜀2𝑑2 + 1) 𝑦.
                             (27) 

Doing the rescaling of variable (𝑥, 𝑦) = (𝜀𝑋, 𝜀𝑌), the system (27) in the new variable (𝑋, 𝑌) 

is 

                  
�̇� = −(𝑎 + 1)𝑋 − ((𝑎 + 1)2 + 𝜔2)𝑌 + 2𝜀𝑋𝑌 − 𝜀2𝑋𝑌2,

�̇� = 𝑋 + (𝑎 − 𝜀𝑑1 − 𝜀2𝑑2 + 1)𝑌.
                         (28) 

Now, the linear can be written at the stationary point 𝐸0 of system (28) when 𝜀 = 0,  into its 

real Jordan normal form 

(
0 −𝜔
𝜔 0

). 

This change of variables is verified as, where 𝜔2 = −(𝑎 + 1)2 − 𝑏, 

                                              (
𝑋
𝑌

) = (
−(𝑎 + 1) −𝜔

1 0
) (

𝑈
𝑉

).                                               (29) 

In the new introduced variables (𝑈, 𝑉) , the system (28) is written as follows: 

 

 �̇� = −𝜔𝑉 − 𝜀𝑑1𝑈 − 𝜀2𝑑2𝑈,

�̇� = 𝜔𝑈 +
𝜀𝑈

𝜔
(2(𝜔𝑉 + 𝑈 + 𝑎𝑈) + 𝑑1(𝑎 + 1)) −

𝜀2𝑈

𝜔
((𝑎 + 1)𝑈2 + 𝜔𝑈𝑉 − (𝑎 + 1) 𝑑2).

 (30)  

 

Therefore, using angle 𝜃 and we write the system (30) in the polar coordinates as follows: 

𝑈 = 𝑟 cos 𝜃 and  𝑉 = 𝑟 sin 𝜃, and we can apply the averaging theory, we obtain 

�̇� = −𝜀
𝑟 cos 𝜃

𝜔
(2𝑟𝜔 cos2 𝜃 + cos 𝜃 (−2𝑟(𝑎 + 1) sin 𝜃 + 𝜔𝑑1) − (𝑎 + 1) cos 𝜃 𝑑1 − 2𝑟𝜔) −

𝜀2

𝜔
𝑟 cos 𝜃 (𝑟2(𝑎 + 1) sin 𝜃 cos2 𝜃 − 𝜔𝑟2 cos3 𝜃 + 𝜔(𝑟2 + 𝑑2) cos 𝜃 − 𝑑2(𝑎 + 1) sin 𝜃),                                                                                                                                           

(31) 

�̇� = 𝜔 +
𝜀

𝜔
(cos 𝜃 (2 𝑟 cos 𝜃 + 𝑑1)(cos 𝜃 (𝑎 + 1) + 𝜔 sin 𝜃)) −

𝜀2

𝜔
(cos 𝜃 (𝑟2 cos2 𝜃 −

𝑑2)(cos 𝜃 (𝑎 + 1) + 𝜔 sin 𝜃)).     

We apply the averaging theory to the angular variable 𝜃 as the new independent variable.                                                                                  

We compute 
𝑑𝑟

𝑑𝜃
 and develop the new equation for the system (31) in the variable 𝜀 up to the 

second order in the form 

                                 
𝑑𝑟

𝑑𝜃
= 𝜀 𝑓0.1 + 𝜀2 𝑓0.2 + 𝑂(𝜀3),                                                               (32) 

where  

𝑓0.1 = −
𝑟 cos 𝜃

𝜔2
(2𝑟𝜔 cos2 𝜃) − 2𝑟 sin 𝜃 cos 𝜃 (𝑎 + 1) + 𝜔𝑑1 cos 𝜃 − 𝑑1 sin 𝜃 (𝑎 + 1)

− 2𝑟𝜔), 
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𝑓0.2 =
𝑟 cos 𝜃

𝜔4
(4𝑟2 cos4 𝜃 sin 𝜃 (𝜔2 − 𝑎2 − 4𝑎) + 8𝜔𝑟𝑑1 cos2 𝜃 + 2𝑎𝜔𝑑1

2 cos 𝜃

− 𝑎2𝑑1
2 sin 𝜃 cos2 𝜃 + 𝜔2𝑑1

2 sin 𝜃 cos2 𝜃 − 4𝑟𝑑1 sin 𝜃 cos3 𝜃
− 2𝑎𝑑1

2 sin 𝜃 cos2 𝜃 + 8𝜔𝑟2 cos5 𝜃 + 𝜔3𝑟2 cos3 𝜃
− 8𝜔𝑟2 cos3 𝜃 + 8𝑎𝜔𝑟2 cos5 𝜃 − 8𝑎𝜔𝑟2 cos3 𝜃 − 5𝜔2𝑟2 sin 𝜃 cos2 𝜃
− 6𝜔𝑟𝑑1 cos2 𝜃 − 𝑎𝑟2𝜔2 sin 𝜃 cos2 𝜃 − 6𝑎𝜔𝑟𝑑1 cos2 𝜃 − 2𝜔2𝑟𝑑1 sin 𝜃 sin 𝜃
+ 𝑎𝜔2𝑑2 sin 𝜃 − 𝑎𝜔𝑑1

2 cos 𝜃 − 𝜔𝑑1
2 cos 𝜃 − 𝑑2𝜔3 cos 𝜃 + 𝜔2𝑑2 sin 𝜃

− 𝜔3𝑟2 cos 𝜃 − 4𝑟2 sin 𝜃 cos4 𝜃 + 2𝜔𝑑1
2 cos3 𝜃 − 𝑑1

2 sin 𝜃 cos2 𝜃
− 4𝑎2𝑟𝑑1 sin 𝜃 cos3 𝜃 + 4𝜔2𝑟𝑑1 sin 𝜃 cos3 𝜃 − 8𝑎𝑟𝑑1 sin 𝜃 cos3 𝜃
+ 8𝑎𝜔𝑟𝑑1 cos4 𝜃). 

        We shall apply the averaging differential system of the first order for system (32). Via 

the notation of Theorem 1, we have 𝑡 = 𝜃, 𝑇 = 2𝜋 and 𝑥 = 𝑟. Also, we have interval  

𝐼 = {𝑟: 0 < 𝑟 < �̅�} for some �̅� > 0, given the following result by Theorem 1 formula (b) 

ℱ01 =
1

2𝜋
∫ 𝑓0.1(𝑟)

2𝜋

0

𝑑𝜃 = −
𝑟𝑑1

2𝜔
. 

 

       Hence, ℱ01(𝑟) has no solution in the interval 𝐼. We move to the second-order averaging 

theory   ℱ01 ≡ 0. This makes 𝑑1 = 0 and by Theorem 1 formula (b) after the same calculation 

for the 𝑓0.2 to 

ℱ02 =
1

2π
∫ [𝑓0.2(𝑟) + (

𝜕

𝜕𝑟
𝑓0.1) ∫ 𝑓0.1(𝑟)

𝜃

0

𝑑𝜃] 𝑑𝜃 =
2π

0

−
𝑟(𝑟2(𝜔2 + 4𝑎 + 4) + 4𝜔2𝑑2)

8𝜔3
. 

Therefore, since ℱ02 = 0 has one positive real root 𝑟∗ = 2𝜔√−
𝑑2

𝜔2+4𝑎+4
 in the interval 𝐼. If 

𝑑2

𝜔2+4𝑎+4
< 0, then the derivative of ℱ02 at 𝑟∗ is 

𝑑ℱ02

𝑑𝑟(𝑟∗)
=

𝑑2

𝜔
≠ 0. Moreover, we obtain that the 

small limit cycle is stable if 𝑑2 < 0, and unstable if 𝑑2 > 0.  For 𝜀 > 0 is sufficiently small, 

Theorem 1, guarantees the existence of a 2𝜋 −periodic solution 𝑟∗ such that 𝑟∗(𝜃, 𝜀) →

2𝜔√−
𝑑2

𝜔2+4𝑎+4
 , when 𝜀 → 0. Now we shall look at the system (28), similarly, the current 

system has the periodic solution (𝑥(𝑡, 𝜀), 𝑦(𝑡, 𝜀)) bifurcating from the origin with a period 

tends to 2𝜋 when 𝜀 → 0. ▭ 

We translate the stationary point 𝐸1 to the origin, can you see the above result system (10). 

 

Theorem 8: Consider the forest pest system (10), if  𝑏 = −𝑑2 + 𝜀2𝛽 , 𝜔2 = 2 (𝑑(𝑎 + 𝑑) +

√−𝑑2(𝑎 + 𝑑)), with 𝜔 > 0, (2 (𝑑(𝑎 + 𝑑) − √−𝑑2( 𝑎 + 𝑑))) > 0, 𝑎𝑛𝑑 𝑑2(𝑎 + 𝑑) < 0 

with 𝛽 > 0 with 𝜀 > 0 is a sufficiently small parameter. Only one limit cycle bifurcates from 

the Hopf stationary point at 𝐸1 using the averaging theory of the second order. The limit cycle 

is stable if  (𝑎 + 𝑑)(−2√−𝑑2( 𝑎 + 𝑑) + 𝑑(𝑎 + 𝑑 − 1) < 0, and it is unstable if (𝑎 +

𝑑)(−2√−𝑑2(𝑎 + 𝑑) + 𝑑(𝑎 + 𝑑 − 1) > 0. 

 

Proof: Let the parameters for perturbations 𝑏 = −𝑑2 + 𝜀2𝛽, then the forest pest system (10) 

becomes   

�̇� = −√−𝑑(𝑎𝑑 + 𝑑2 − 𝜀2𝛽) (2𝑦 +
2𝑥𝑦

𝑑
+ 𝑦2) + (𝑑 −

𝜀2𝛽

𝑑
) 𝑥 + (2𝑎𝑑 + 𝑑2 − 𝜀2𝛽)𝑦 −

                                                                   𝑑𝑦2 − 𝑥𝑦2,                                                               (33) 

     �̇� = 𝑥 − 𝑑𝑦. 
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Doing the rescaling of variable (𝑥, 𝑦) = (𝜀𝑋, 𝜀𝑌), then the system (33) in the new variable 

(𝑋, 𝑌) is 

�̇� = −√−𝑑(𝑎𝑑 + 𝑑2 − 𝜀2𝛽) (2𝑌 +
2𝜀𝑥𝑦

𝑑
+ 𝜀𝑌2) + (𝑑 −

𝜀2𝛽

𝑑
) 𝑋 + (2𝑎𝑑 + 𝑑2 − 𝜀2𝛽)𝑌 −

                                                                   𝜀𝑑𝑌2 − 𝜀2𝑋𝑌,                                                             (34)                                                                             

�̇� = 𝑋 − 𝑑 𝑌. 
Now, the linear can be written at the stationary point 𝐸1 of the system (34) when 𝜀 = 0,  into 

its real Jordan normal form 

(
0 −𝜔
𝜔 0

). 

This change of variables is verified as, 

                                               (
𝑋
𝑌

) = (
𝑑 −𝜔
1 0

) (
𝑢
𝑣

).                                                           (35) 

In the new variables (𝑢, 𝑣),  the system (34) is written as follows: 

�̇� = −𝜔 𝑣, 
                                                                                                                                                (36) 

�̇� = 𝜔𝑢 + 𝜀 (
(𝑑−3√−𝑑(𝑑(𝑎+𝑑)−𝜀2𝛽)

𝜔
𝑢2 +

2√−𝑑(𝑑(𝑎+𝑑)−𝜀2𝛽)

𝑑
𝑢𝑣) + 𝜀2 (

2𝛽𝑢+𝑑𝑢3

𝜔
− 𝑢2 −

𝛽

𝑑
𝑣).                                       

Therefore, using angle 𝜃 and we write the differential system (36) in polar coordinates as 

follows: 𝑢 = 𝑟 cos 𝜃 and  𝑣 = 𝑟 sin 𝜃,  we can apply the averaging theory, and we obtain  

�̇� =

𝜀 𝑟2 sin 𝜃 cos 𝜃 (
(𝑑−3√−𝑑(𝑑(𝑎+𝑑)−𝜀2𝛽)

𝜔
+

2√−𝑑(𝑑(𝑎+𝑑)−𝜀2𝛽)

𝑑
sin 𝜃) −

𝜀2𝑟 sin 𝜃 (
2𝛽 cos 𝜃+𝑑 𝑟2 cos3 𝜃

𝜔
−

β sin 𝜃

𝑑
− 𝑟2 sin 𝜃 cos2 𝜃) + 𝑂(𝜀3),                                   (37)                                                

�̇� =

𝜔 + 𝜀 𝑟 cos2 𝜃  (2√−𝑑(𝑑(𝑎 + 𝑑) − 𝜀2𝛽) (
sin 𝜃

𝑑
−

3 cos 𝜃

𝜔
) +

𝑑 cos 𝜃

𝜔
) −

𝜀2 cos 𝜃

𝑑 𝜔
(−𝜔 sin 𝜃 (𝑑𝑟2 cos2 𝜃 + 𝛽)+𝑑2𝑟2 cos3 𝜃 + 2𝛽𝑑 cos 𝜃) + 𝑂(𝜀3).    

 

       We applying the averaging theory to the angular variable 𝜃 as the new independent 

variable. We compute 
𝑑𝑟

𝑑𝜃
 and develop the new equation for the system (37) in the variable 𝜀 

up to the second order in the form 

          
𝑑𝑟

𝑑𝜃
= 𝜀 𝑓0.1 + 𝜀2 𝑓0.2 + 𝑂(𝜀3),                                      (38) 

where 

𝑓0.1 = −
𝑟2 sin 𝜃 cos 𝜃

𝑑𝜔
(2√−𝑑2(𝑎 + 𝑑) sin 𝜃 + 𝜔 + 𝑑 cos 𝜃 (𝑑 − 3√−𝑑2(𝑎 + 𝑑))),  

𝑓0.2 =

−
𝑟 sin 𝜃

𝑑2(𝑑(𝑎2+2𝑎𝑑+𝑑2−𝑎−𝑑+2√−𝑑2(𝑎+𝑑)( 𝑎+ 𝑑))
(𝜔 (12𝑎𝑟2 sin 𝜃 cos4 𝜃 +  12𝑟2𝑑3 sin 𝜃 cos4 𝜃 +

4𝑟2𝑑√−𝑑2(𝑎 + 𝑑) sin 𝜃 cos4 𝜃 − 2𝑎𝑟2𝑑2 sin 𝜃 cos2 𝜃 −  2𝑟2𝑑3 sin 𝜃 cos2 𝜃 −

2𝑟2𝑑√−𝑑2(𝑎 + 𝑑) sin 𝜃 cos2 𝜃 − 2𝛽𝑎𝑑 sin 𝜃 − 2𝛽𝑑2 sin 𝜃 −  2𝛽√−𝑑2(𝑎 + 𝑑) sin 𝜃) +

√−𝑑2(𝑎 + 𝑑)(4𝛽𝑑 cos 𝜃 + 8𝑎𝑟2𝑑 cos3 𝜃 − 14𝑟2𝑑2 cos5 𝜃 − 8𝑎𝑟2𝑑 cos5 𝜃) +
𝑟2𝑑3  cos5 𝜃 − 8𝑎2𝑟2𝑑2 cos5 𝜃 − 25𝑎𝑟2𝑑3 cos5 𝜃 − 17𝑟2𝑑4 cos5 𝜃 + 8𝑎2𝑟2𝑑2 cos3 𝜃 +

18𝑎𝑟2𝑑3 cos3 𝜃 + 10𝑟2𝑑4 cos3 𝜃 + 4𝛽𝑎𝑑2 cos 𝜃 + 4𝛽𝑑3 cos 𝜃).  

We shall apply the averaging differential system as represented in Theorem 1 to the 

differential system (38). This is done by using Theorem 1, we have 𝑡 = 𝜃, 𝑇 = 2𝜋 and 𝑥 = 𝑟. 

Also, we have interval  𝐼 = {𝑟: 0 < 𝑟 < �̅�} for same �̅� > 0,given the following results 
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ℱ01 =
1

2𝜋
∫ 𝑓0.1(𝑟)

2𝜋

0

𝑑𝜃 = 0. 

ℱ02 =
1

2π
∫ [𝑓0.2(𝑟) + (

𝜕

𝜕𝑟
𝑓0.1) ∫ 𝑓0.1(𝑟)

𝜃

0
𝑑𝜃] 𝑑𝜃 =

2π

0
−

𝑟𝜔

8(−2√−𝑑2(𝑎+𝑑)+𝑑(𝑎+𝑑−1))(𝑑2(𝑎+𝑑))
(−2𝛽√−𝑑2(𝑎 + 𝑑) + 𝑑(𝑑𝑟2 − 2𝛽)(𝑎 + 𝑑)).  

Therefore, since ℱ02 = 0 has one positive real root 𝑟∗ = √
2𝛽(𝑎𝑑+𝑑2−√−𝑑2(𝑎+𝑑))

𝑑2(𝑎+𝑑)
 , when 

𝑑2(𝑎 + 𝑑) < 0 and 𝛽 > 0, then derivative of ℱ02 at 𝑟∗ is 

 
𝑑ℱ02

𝑑𝑟(𝑟∗)
=

−𝛽𝜔(𝑎𝑑+𝑑2+2√−𝑑2(𝑎+𝑑))

2𝑑2(𝑎+𝑑)(−2√−𝑑2(𝑎+𝑑)+𝑑(𝑎+𝑑−1)
≠ 0, and must be 𝑎 > 0, 𝑑 < 0 or 𝑎 < 0, 𝑑 > 0. 

Moreover, we obtain that the small limit cycle is stable if (𝑎 + 𝑑)(2√−𝑑2(𝑎 + 𝑑) +

𝑑(𝑎 + 𝑑 − 1) < 0, and it is unstable if ( 𝑎 +  𝑑)(2√−𝑑2(𝑎 + 𝑑) + 𝑑(𝑎 + 𝑑 − 1) > 0.  For 

𝜀 > 0 is sufficiently small, Theorem 1 guarantees the existence of a 2𝜋 −periodic solution 𝑟∗ 

such that 

 𝑟∗(𝜃, 𝜀) → √
2𝛽(𝑎𝑑+𝑑2−√−𝑑2(𝑎+𝑑))

𝑑2(𝑎+𝑑)
  , when 𝜀 → 0. Now we have to look back to system (28), 

it also has periodic solution (𝑥(𝑡, 𝜀), 𝑦(𝑡, 𝜀)) bifurcating from the origin with a period tends to 

2𝜋 when 𝜀 → 0. ▭ 

 

5. Conclusions 

       This paper sheds light on the analysis of stability and bifurcation of the forest pest 

system. In this system, we have shown that the Hopf bifurcation occurs at stationary points 𝐸0 

and 𝐸1,2. We studied the limit cycles bifurcating from these stationary points via the first 

Lyapunov coefficient and averaging theory of the first order and the second order. Moreover, 

it is shown that six limit cycles can bifurcate from stationary points and provide an estimation 

of the bifurcating limit cycles with the direction of Hopf bifurcation and bifurcating periodic 

solutions stability are completely studied.  Moreover, the local stability of stationary points is 

discussed, as well as we prove that this system has no limit cycles if either 𝑎 + 𝑑 = 0, or 

 𝑎, 𝑑 > 0  or 𝑏 > 0 in the region 𝐷 = {(𝑥, 𝑦): 𝑥𝑦 ≠ 0},via the Bendixson-Dulac criteria. Also, 

some numerical results are presented.  
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