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A B S T R A C T: 
A simple chaotic   system with only one nonlinearity and five terms was introduced by Sprott. We consider the generalized Sprott 

   differential system  ̇      ,  ̇          ̇     ,   where       and   represent real parameters. We study the local 

stability of equilibrium points, in particular, by choosing an appropriate bifurcation parameter, the paper proves that Hopf 

bifurcation occurs in the system, and presents a formula for determining the direction of the Hopf bifurcation and the stability of 

bifurcating periodic solutions by applying normal form theory. Moreover, we study the dynamics near and at infinity by using the 

Poincar´e compactification to describe the global dynamics of the trajectories of the system. Our results show that the real 

parameters do not affect the global dynamics at infinity of the system. 
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1. INTRODUCTION 

 

In the past few decades, extensive research has 

been done on chaos, an intriguing occurrence in 

nonlinear dynamical systems. A nonlinear 

deterministic system that exhibits complicated and 

unpredictable behavior is called a chaotic system. 

Chaos theory has many applications in a variety of 

ways in the natural sciences (Guckenheimer &   

Holmes, 2013; Sprott, 1994). Bifurcation is the 

most important theory for the qualitative 

investigation of dynamical systems and can be 

used to reveal complex dynamical characteristics 

of the system under consideration. Characterizing 

the existence of periodic solutions is one of the 

more basic issues in the qualitative theory of 

differential systems in three dimensions. A family 

of periodic solutions can bifurcate from a known 

family of equilibrium points in a dynamical      

 

 

 

 

system using the Hopf bifurcation, which provides 

the simplest criterion (Jiang, Han & Qinsheng, 

2010). 

 

Suppose that the nonlinear autonomous system   

 ̇   (   ) ,         , 

has an isolated equilibrium point  ( ), where   is 

bifurcation parameter at which the following 

conditions are satisfied. 

1. The Jacobian matrix    ( ( ))  )  has a  pair 

of complex eigenvalues       ( )    ( ) and 

another eigenvalue      with  (  )     
   (  )   .  

2.  
 

  
(  ( (  ))   , where   be any eigenvalue 

of Jacobian matrix.  

Then, there exists a family of periodic solutions 

bifurcating at (    ), for more details see (Amen 

&   Salih   2008; Jiang, Han & Qinsheng, 2010; 

Mirkhan & Amen, 2022; Moiola &   Chen, 1996). 
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The polynomial differential system (1) listed 

below, like any polynomial vector field, can be 

extended to an analytic system on a closed ball of 

radius one, whose interior is diffeomorphic to    

and whose boundary, sphere    is invariant by the 

flow of the extended system and plays the role to 

infinity. The method for creating such an 

extension is the well-known Poincar´e 

compactification for polynomial vector fields, 

which is described in (Cima &   Llibre, 1990). The 

sphere   , which represents the points at infinity 

in this context, is referred to as Poincar´e sphere. 

Also, in (Messias, 2011), a summery about 

Poincar´e compactification for a polynomial 

vector field in    is provided for understanding 

section 3 of this paper. 

 

Sprott suggested 19 straightforward chaotic flows 

known as Sprott A-S systems in 1994 (Sprott, 

1994), where the generalized Sprott   system is 

described by the following first order autonomous 

differential equations  

 

     ̇          ̇           ̇           (1)     

                                               

depending on three real parameters     and   
 . As usual, the dot denotes the derivative with 

respect to the time    This system for         
    and     is the Sprott   system and exhibits 

a strange chaotic attractor (Sprott, 1994). The 

characteristics of system (1), including their 

critical points, Lyapunov exponents and fractal 

dimensions, are studied in (Sprott, 1994). Results 

for the Sprott L system's global chaotic 

synchronization utilizing the active control 

method were derived in the article (Vaidyanathan, 

2012). 

In this study, we have two main goals. The first 

goal is to analyze the existence of a Hopf 

bifurcation in System (1), by selecting a suitable 

bifurcation parameter and applying the normal 

form theory. This will lead to the birth of a limit 

cycle (isolated closed orbits) from an equilibrium 

point of the system. 

The second one is to study dynamical behavior at 

infinity. In order to fully describe the dynamics of 

system (1) on the sphere    at infinity, we employ 

the Poincar´e compactification described above. 

This will help us understand how the solutions, 

depending on the parameter values, approach and 

depart from infinity. 

 

2. Local Stability of Equilibrium Points and 

Hopf Bifurcation Analysis  

We now compute the equilibrium points of system 

( ). By simple analysis, it is easy to obtain that 

if     system (1) has only one equilibrium point 

  (    
   

   

 
). While when     and     , 

system (1) has a non-isolated equilibrium points 

  (     ), for all real number   . But if     and  

   , then system (1) has no equilibrium points. 

 

Proposition 1. For system (1). 

1. If      and     , then the equilibrium 

point    is asymptotically stable. 

2. If       and    , then the equilibrium point 

   is unstable. 

 

Proof. 1. The characteristic equation of the 

Jacobian matrix at the equilibrium point     of 

system (1) is given by  

 

           (      )            (2)      

                                               

When     and     , so by the Routh-

Hurwitz criterion, the zeros of the above 

characteristic equation have negative real parts. 

Hence, the equilibrium point      is  

asymptotically stable. 

2. When      equation (2) becomes  

 

                                   (3)      

                                                                     

if      then equation (3) has exactly one 

positive root by using Descartes' rule of signs, 

then the equilibrium point    is unstable.                 

 

Proposition 2. (Occurrence of Hopf bifurcation) 

The characteristic equation (2) has a pair of purely 

imaginary conjugate eigenvalues          

   √  with a real eigenvalue       if and only 

if     and      then system (1) undergoes the 

Hopf bifurcation at the equilibrium point     
provide that      
 

Proof. It is very simple to show that the 

characteristic equation (2) has a pair of purely 

imaginary conjugate eigenvalues with a negative 

eigenvalue if and only if      and      Then 

if     we get the characteristic equation (3) as 

given below 

                   
Transform to 
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(   )(    )         (4) 

                                       

Hence, equation (4) has a pair purely imaginary 

conjugate eigenvalues          √  ,    with 

a real eigenvalue       . We can choose   is a 

bifurcation parameter and the critical value is 

         Using the implicitly differentiating 

   (  ) in equation (2) we get  
  

  
 

   

        
. 

 

Hence, we obtain  

  (
  

  
)
        √ 

 
 

   
    

and  

    (
  

  
)
        √ 

  
 √ 

   
    

Therefore, the first and second conditions of Hopf 

bifurcation are satisfied. However, in order to use 

the Hopf bifurcation Theorem (Guckenheimer &   

Holmes, 2013). Then system (1) undergoes the 

Hopf bifurcation at the equilibrium point               

                                                 

                                                                                        

Now, we investigate the direction, stability and 

period of the bifurcating periodic solution for 

system (1) at the equilibrium point   , by 

applying normal form theory (Hassard &   Wan, 

1978).  

First, we make the change of variables  

 

(     )  (               
   

 
),  

which means, we move the equilibrium point 

(       
   

 
) to the origin, then system (1) 

becomes  

 

                       ̇           
                      ̇     

               (5)                                                    

                      ̇       
 

 Now, we find that the eigenvectors correspond to 

the eigenvalues    and   , suppose that        

is an eigenvector correspond     √  and    is 

an eigenvector correspond       as given 

below 

     (
 
 
 
)        (

 √ 
 
 

)        (
 

    
 

).   

Let  

  (      )  (
 √   
      
   

)  

 

 

We take the following change (

  

  

  
)   (

  

  

  
)  for 

system (5) so we get   

 

      ̇   √      (        )  

        ̇  √      (        )    (6)                                                     

       ̇        (        )  
where 

 

      (        )   
 √    

 

   
 

      

   
 

   
 

√ (   )
, 

       (        )  
     

 

   
 

  √     

   
 

   
 

(   )
,   (7)                                         

        (        )   
     

 

   
 

  √     

   
 

   
 

(   )
  

 

By using proposed by Hassard et al and described 

in (Hassard &   Wan, 1978), we work to 

calculated the following quantities and all 

quantities are calculated at     

and (        )  (     )  
  

       
 

 
(
    

   
  

    

   
   (

    

   
  

    

   
 ))  

 
 √ 

 (   )
 

   

 (   )
  

 

       
 

 
(
    

   
  

    

   
   

    

      
  (

    

   
  

    

   
   

    

      
))   

 √ 

 (   )
 

   

 (   )
  

 

      
 

 
(
    

   
  

    

   
   

    

      
  (

    

   
  

    

   
   

    

      
))   

 √ 

 (   )
 

   

 (   )
  

 

     
 

 
(
    

   
  

    

       
 

    

       
 

    

   
  

 (
    

   
  

    

       
 

    

   
    

 
    

   
 ))     

 

Then, we solve  
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(
    

   
  

    

   
 )   

  

 (   )
  

 

         
 

 
(
    

   
  

    

   
    

    

      
)   

  

 (   )
  

 

 By solving the following equations  

 

                
 

     (      )         , 

 

we obtain  

             
  

 (   )
  

          
  

 (   )(    )
 

   √ 

 (   )(    )
. 

 

Moreover,  

     
 

 
(

    

      
 

    

      

  (
    

      
 

    

      
))

 
 

   
 

  √ 

   
  

     
 

 
(

    

      
 

    

      

  (
    

      
 

    

      
))

 
 

   
 

  √ 

   
  

 

                         
   (     )

 
     

(   ) (    )
  

( 
   √ (     )

 
    √ )

(   ) (    )
. 

 

By using the above analysis, we can calculate the 

following quantities below 

 

    ( )  
 

  
(        |   |

  
 

 
|   |

 )  

 

 
   =  

   

         
  (

  √ (       )

 (   ) (    )
 ), 

 

        
  (  ( ))

  (  (  ))
 

  

    
 , 

 

             ( )   
   

        
    

 

           
  (  ( ))     (  (  ))

 
 =

  

     
    

 

Now,    determines the type of Hopf bifurcation 

and the direction of bifurcating periodic solutions; 

   determines the stability of the bifurcating 

periodic solutions;    determines the increases 

(decreases) of the period of bifurcating periodic 

solutions. If     then      and    is always 

negative, so the Hopf bifurcations is supercritical 

and bifurcating periodic solutions exist for    . 

But if    , then     , so the Hopf 

bifurcations is subcritical and bifurcating periodic 

solutions exist for    . Since      , then the 

period of bifurcating closed orbits increases. Then 

we have the following result.  

 

Theorem 1. System (1) exhibits a Hopf 

bifurcation at the equilibrium point   , when   

pass through    with the following properties. 

i. When      (    )  then the Hopf 

bifurcation is subcritical (supercritical) and 

the bifurcating periodic solution exist for 

      (     ). 

ii. When       (    ), then the 

bifurcating periodic solutions are orbitally 

stable (unstable). 

iii. When       (    )  then the 

bifurcating periodic solutions are decreases 

(increases). 

We now give some examples to illustrate the 

result in Theorem 1. To better understand the 

behavior of the derived periodic orbits, close to a 

Hopf bifurcation, we fix the values of the system 

parameters here and obtain numerical result. 

When     and      , and according to 

Proposition 2, we have       It follows from 

results that                          
              by using Theorem 1, since 

      the Hopf bifurcation is supercritical, 

which means that the equilibrium point   of 

system (1) stable when     and the equilibrium 

losses its stability and a Hopf bifurcation occurs 

when   increases through   , i.e., a family of 

periodic solutions bifurcate out from the 

equilibrium point, as shown in Figure 1.i, phase 

portrait for the system (1) for           
   . Here we observe the behavior of the Sprott L 

system after a Hopf bifurcation occurs    . 

Notice that the orbits decay to the equilibrium 

point   . Phase portrait for the  system (1) 

when    ,          in Figure 1.ii . At the 
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Hopf bifurcation point (    ), we can see how 

the system (1) behaves in this instance. The 

trajectories remain close to the periodic solution 

around the attractor   . Phase portrait for the 

system (1) when     ,            see 

Figure 1.iii. Before a Hopf bifurcation happens, 

we may see how the system (1) behaves in this 

instance (    ). 

 

                            (i) 

 

                             (ii) 

 

                            (iii) 

Figure 1. Phase diagram of generalized Sprott   

system (1) at the equilibrium point   ,  when (i)   

            (ii)     ,        , (iii)  

    ,          . 

 

3. Dynamics Behavior Near and at Infinity  

 

In this section, we investigate the behavior of the 

trajectories of system (1) near and at infinity by 

using the theory of Poincar´e compactification in 

   (Messias, 2011). 

We consider the polynomial differential system  

     ̇   (     )       ̇   (     ),       ̇   (     )  
 or equivalently the associated vector field  

   (     )
 

  
  (     )

 

  
  (     )

 

  
.  

 

Let   be the degree of   and we define   max 

{deg (P, Q, R)}. So, the Poincar´e ball is defined 

as 

   *  (           )          +, 
be the unit sphere,  

   *         +    *         +, 
as the northern and southern hemispheres, 

respectively. Denote the tangent hyperplanes at 

the points 

(        ) (        ) (        ) (        ) 
by the local charts       for         where 

   *         +    *         +  We 

only consider the local charts       for         

for obtaining the dynamics at  infinity.    

                             

Theorem 2. For      the phase portrait of 

system (1) on the Poincar´e compactification at 

infinity is as shown in Figure 7.  

 

Proof. To prove this theorem, we will study the 

Poincar´e compactification of system (1) in the 

local charts    and    where           In order to 

understand its global behavior. 

First in the local charts    and   , we take the 

change of variables (     )  (
 

 
 
 

 
 
 

 
) and  

by the following computations and change of 

variables  

 

   ̇        (
 

 
 
 

 
 
 

 
)     (

 

 
 
 

 
 
 

 
)  

   ̇        (
 

 
 
 

 
 
 

 
)     (

 

 
 
 

 
 
 

 
)   (8)                                                         

    ̇        (
 

 
 
 

 
 
 

 
)  

 

The expression of the Poincar´e compactification 

 ( ) of system (1) in the local chart    is given 

by  

 

   ̇                  
   ̇                           (9)                                                             

https://www.worldscientific.com/doi/abs/10.1142/S0218127416500838
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   ̇              
 

In the points on the sphere    that corresponding 

to the points at infinity we have      and so 

system (9) becomes  

                                  ̇     
                                  ̇                (10)                                                                                                                 

Since    , so system (10) has no equilibrium 

point. It follows from the Flow Box Theorem that 

the dynamics of the system on the local chat    is 

equivalent to the one shown in Figure 2 whose 

solutions are given by parallel straight lines. We 

find the general directions of the vector field and 

the local and global trajectory structure shown in 

Figure 2. 

Now if we study the flow in the local chart   , we 

know that it the same as the flow in the local chart 

  , because the compacted vector field  ( ) in    

coincides with the vector field  ( ) in    

multiplied by   . Hence the phase portrait on the 

local chart    is the same as the one shown in 

Figure 2, reversing the direction of the time. 

 

 

  
Figure 2. Dynamics of system (1) on the Poincar´e 

sphere at infinity in the local and the global charts 

U1 for    . 

 

Second in the local charts    and   , with the 

change of variables (     )  (
 

 
 
 

 
 
 

 
) and by 

the following computations and changes  

 

   ̇        (
 

 
 
 

 
 
 

 
)     (

 

 
 
 

 
 
 

 
)  

   ̇        (
 

 
 
 

 
 
 

 
)     (

 

 
 
 

 
 
 

 
)  (11)                                                          

    ̇        (
 

 
 
 

 
 
 

 
)  

 

The expression of the Poincar´e compactification 

 ( ) of system (1) in the local chart    is given 

by  

 

    ̇                 
    ̇                       (12)                                                                  

    ̇            
 

For     (which corresponds to the points on the 

sphere    at infinity) system (12) becomes  

                                    ̇         
                                    ̇               (13)                                                                                                    

After eliminating the common factor     of 

system (13) (by rescaling of the time) we obtain  

                                    ̇       
                                    ̇              (14)                                                                                                      

System (14) has a unique equilibrium point (0,0), 

and  has the two eigenvalues of the Jacobian 

matrix at the equilibrium point origin of  system 

(11) are equal   , hence the origin is stable node 

of system (14). Hence, due to the common factor 

  , the local behavior of the solutions near to the 

origin of system (13) is constituted by parabolic 
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repelling sector in  *   + and parabolic attractor 

sector in *   +. The local and global trajectories 

are shown in Figure 3. 

Also, if we study the flow in the local chart   , we 

know that it the same as the flow in the local chart 

  , because the compacted vector field  ( ) in 

   coincides with the vector field  ( ) in    

multiplied by   . Hence the phase portrait on the 

local chart    is the same as the one shown in 

Figure 3, reversing the direction of the time. 

In briefly the equilibria at infinity at the positive 

and (respectively negative) endpoints of the 

  axis are stable and (respectively unstable) 

node. See Figure 3. 

 

 
Figure 3. Dynamics of system (1) on the Poincar´e 

sphere at infinity in the local and the global charts 

U2
. 

 

Finally, in the local charts    and   , we consider 

infinity at   axis. Let  (     )  (
 

 
 
 

 
 
 

 
), so by 

the following computations and changes  

 

    ̇        (
 

 
 
 

 
 
 

 
)     (

 

 
 
 

 
 
 

 
)  

    ̇        (
 

 
 
 

 
 
 

 
)     (

 

 
 
 

 
 
 

 
)    (15)                                                      

   ̇        (
 

 
 
 

 
 
 

 
)  

 

The expression of the Poincar´e compactification 

 ( ) of system (1) in the local chart    is given 

by  

 

 

   ̇                   
   ̇                        (16)                                                               

   ̇            
 

Also, in the points of the sphere    that 

corresponds to the points at infinity we have 

     and so system (16) becomes 

 

                                    ̇      
                                    ̇           (17)    

                                                                                               

System (17) has a line of non-hyperbolic 

equilibria given by the (   ) and the Jacobian 

matrix of the system (17) at these equilibria has 

two null eigenvalues. System (17) is integrable, 

because if     it has the first integral      , 

where     is constant. 

By using the first integral and we know that 

system (17) has the   axis as a line of equilibria 

and the local and global trajectories are shown in 

figure 4. 

Now, if we investigate the flow in the local chart 

  , we know that it the same as the flow in the 

local chart    reversing the time, because the 

compactified vector field  ( ) in    coincides 

with the vector field  ( ) in    multiplied by 

  . Hence, the phase portrait on the chart    is 

the same as shown in Figure 4, reversing the time 

direction. 
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Figure 4. Dynamics of system (1) on the Poincar´e 

sphere at infinity in the local and the global charts 

U3 for    . 

 

From the above analysis in all charts and taking 

into account its orientation shown in Figure 6 in 

all local charts at the positive endpoints of the x, 

y, z axes, we can get the structure of system (1) on 

the sphere at infinity shown in Figure 6. The 

system has two nodes on the sphere and there are 

no periodic orbits.  We observe that the 

description of the complete phase portrait of 

system (1) on the sphere at infinity was possible 

because of the invariance of these sets under the 

flow of the compactified system. This proves 

Theorem 2.     

 

 
Figure 5. Orientation of the local charts Ui, i = 1, 

2, 3 in the positive endpoints of coordinate axis x, 

y, z. 

 

 
Figure 6. Global phase portrait of system (1) on 

the Poincar´e sphere at infinity 

 

It is significant to note that the global dynamics at 

infinity do not depend on the parameters in system 

(1). Figure 6 also shows a pair of distinct 

equilibriums and two closed curves filled with 

equilibria. 

 

4. Conclusion  

New insights into the generalized Sprott    

differential system are presented. Firstly, the 

equilibrium points and their linear stabilities of 

system are determined. Also, the Hopf bifurcation 

analysis of system (1) has been studied by 

applying normal form theory. We analyzed the 

direction of Hopf bifurcation and the stability of 
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bifurcating periodic solutions in detail. Finally, 

the Poincare compactification approach has been 

used to study the global dynamics at infinity. 
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