diff or Diff - differentiation or partial differentiation

|                                                            | •                                                                                                                                     |  |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|
| diff(f, x1,, xj)                                           | $\frac{\mathrm{d}^{j}}{\mathrm{d}x_{j}\ldots\mathrm{d}x_{l}}f$                                                                        |  |
| diff(f, [x1\$n])                                           | $\frac{\mathrm{d}^n}{\mathrm{d}x_1^n}f$                                                                                               |  |
| diff(f, x1\$n, [x2\$n, x3],<br>, xj, [xk\$m])              | $\frac{\mathrm{d}^r}{\mathrm{d}x_k^m \mathrm{d}x_j \dots \mathrm{d}x_3 \mathrm{d}x_2^n \mathrm{d}x_1^n} f$                            |  |
| f -                                                        | algebraic expression or an equation                                                                                                   |  |
| x1, x2,, xj - names representing differentiation variables |                                                                                                                                       |  |
|                                                            | algebraic expression entering constructions like $x$ , representing nth order derivative, assumed to be integer order differentiation |  |
| Find $\frac{d(x \sin(cosx))}{d(x \sin(cosx))}$             |                                                                                                                                       |  |

> diff(x\*sin(cos(x)),x);

 $\sin(\cos(x)) - x\cos(\cos(x))\sin(x)$ 

Find higher order derivatives.

Find  $\frac{d^3sinx}{dx^3}$ > diff(sin(x),x\$3);

 $-\cos(x)$ 

Compute partial derivatives.

Ex:Find  $\frac{\partial^2 (x^2 + x y^2)}{\partial y \partial x}$ . > diff(x^2+x\*y^2,x,y);

2y

The Diff command is inert, it returns unevaluated.

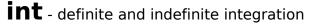
> Diff(tan(x),x);

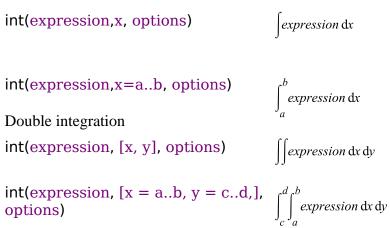
$$\frac{\mathrm{d}}{\mathrm{d}x}\tan(x)$$

The command map (f,list) applies the function f to each elements of the list. Ex: To find third derivative of sin x, tanx and  $\cot^{-1}x$ . Sol: > map(diff,[sin(x),tan(x), arccot(x)], x\$3);

$$\left[-\cos(x), 2\left(1 + \tan(x)^{2}\right)^{2} + 4\tan(x)^{2}\left(1 + \tan(x)^{2}\right), -\frac{8x^{2}}{\left(1 + x^{2}\right)^{3}} + \frac{2}{\left(1 + x^{2}\right)^{2}}\right]$$

## implicitdiff


- differentiation of a function defined by an equation


```
implicitdiff(f, y, x)
```

```
f algebraic expressions or equations
```

y (variable) name or function of dependent variable x name (of derivative variable)

EX: find  $\frac{dy}{dx}$  and from  $x^2+y^2=1$ Sol: implicitdiff( $x^2+y^2=1,y,x$ ) Ex: Find  $\frac{d^2y}{dx^2}$  if  $x^2+y^3=1$ . Answer:  $f := x^2 + y^3 = 1;$ implicitdiff(f, y, x, x);  $-\frac{2}{9} \frac{3y^3+4x^2}{y^5}$ 





| expression | - algebraic expression; integrand                                        |
|------------|--------------------------------------------------------------------------|
| х, у       | - names; variables of integration                                        |
| a, b, c, d | - endpoints of interval on which integral is taken                       |
| options    | (optional) various options to control the type of integration performed. |

options - (optional) various options to control the type of integration performed.

> Int(f, x)>  $\mathbf{v} := Int(f(\mathbf{x}), \mathbf{x} = \mathbf{a..b});$  $v := \int_{a}^{b} f(x) dx$ 

> Int(f, x, y)

> Int(f, x, y, z)

 $\iint f \, \mathrm{d}x \, \mathrm{d}y$ 

Double integral

Triple integral

 $\iiint f \, \mathrm{d} x \, \mathrm{d} y \, \mathrm{d} z$ 

## Examples

```
> int( x/(x^{3-1}), x );
```

$$\frac{1}{3}\ln(x-1) - \frac{1}{6}\ln(x^2 + x + 1) + \frac{1}{3}\sqrt{3}\arctan\left(\frac{1}{3}(2x + 1)\sqrt{3}\right)$$

> int( exp(-x^2)\*ln(x), x=0..infinity );  $-\frac{1}{4}\sqrt{\pi}\gamma - \frac{1}{2}\sqrt{\pi}\ln(2)$ 

A double integral

> int(x\*y^2, [x, y] );

$$\frac{1}{6}x^2y^3$$

> int( $x*y^2$ , [x = 0..y, y = -2..2]);  $\frac{32}{5}$ 

Find:

1) 
$$\int_{0}^{1} e^{x^{3}} dx > f := int(\exp(x^{3}), x = 0..1);$$

$$f := \int_{0}^{1} \int_{0}^{3} dx$$

> *evalf*(%)

1.341904418

>  $int(exp(x^3), x = 0..1, numeric)$ 1.341904418

$$f := \int_{a}^{b} \frac{1}{x} dx$$

$$f := int \left( \frac{1}{x}, x = a . b \right);$$
Warning, unable to determine if 0 is between a and b; try
to use assumptions or use the AllSolutions option
$$f := \int_{a}^{b} \frac{1}{x} dx$$

4)Find integral of sinx , tanx and lnx to each elements.

, map(int,  $[\sin(x), \tan(x), \ln(x)], x$ )

 $5) \int_{0}^{1} e^{-x^{2}} \ln(x) \, dx$ 

 $\bf 6\bf)$  Find the third integral of cos2x , cot3x and sin^1 2x to each elements.

7)  $\int x e^{ax} \sin(bx) dx$