diff or Diff - differentiation or partial differentiation

diff(f, x1, ..., xj)

$$
\frac{\mathrm{d}^{j}}{\mathrm{~d}_{j} \ldots \mathrm{~d} x_{1}} f
$$

diff(f, [x1\$n])

$$
\frac{\mathrm{d}^{n}}{\mathrm{~d}_{1}^{n}} f
$$

diff(f, x1\$n, [x2\$n, x3],
..., xj, [xk\$m])

$$
\frac{\mathrm{d}^{r}}{\mathrm{~d}_{k}^{m} \mathrm{~d} x_{j} \ldots \mathrm{~d} x_{3} \mathrm{~d} x_{2}^{n} \mathrm{~d} x_{1}^{n}} \mathrm{~J}
$$

f - algebraic expression or an equation
x1, $x 2, \ldots, x j-$ names representing differentiation variables
n
algebraic expression entering constructions like $\mathrm{x} \$ \mathrm{n}$, representing nth order derivative, assumed to be integer order differentiation

Find $\frac{d(x \sin (\cos x))}{d x}$
$>\operatorname{diff}\left(x^{*} \sin (\cos (x)), x\right) ;$

$$
\sin (\cos (x))-x \cos (\cos (x)) \sin (x)
$$

Find higher order derivatives.
Find $\frac{d^{3} \sin x}{d x^{3}}$
$>\operatorname{diff}(\sin (x), x \$ 3) ;$

Compute partial derivatives.
Ex:Find $\frac{\partial^{2}\left(x^{2}+x y^{2}\right)}{\partial y \partial x} . \quad>\operatorname{diff}\left(x^{\wedge} 2+x^{\star} y^{\wedge} 2, x, y\right)$;

The Diff command is inert, it returns unevaluated.
$>\operatorname{Diff}(\tan (x), x)$;

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \tan (x)
$$

The command map (f,list) applies the function f to each elements of the list.
Ex: To find third derivative of $\sin x, \tan x$ and $\cot ^{-1} x$.
Sol: > map(diff,[sin(x),tan(x), $\operatorname{arccot}(x)], x \$ 3)$;

$$
\begin{aligned}
& {\left[-\cos (x), 2\left(1+\tan (x)^{2}\right)^{2}+4 \tan (x)^{2}\left(1+\tan (x)^{2}\right),-\frac{8 x^{2}}{\left(1+x^{2}\right)^{3}}\right.} \\
& \left.\quad+\frac{2}{\left(1+x^{2}\right)^{2}}\right]
\end{aligned}
$$

implicitdiff

- differentiation of a function defined by an equation
implicitdiff(f, y, x)
f algebraic expressions or equations
y (variable) name or function of dependent variable
x name (of derivative variable)
EX: find $\frac{d y}{d x}$ and from $x^{2}+y^{2}=1$
sol: implicitdiff($\left.\mathrm{x}^{\wedge} 2+\mathrm{y}^{\wedge} 2=1, \mathrm{y}, \mathrm{x}\right)$
Ex: Find $\frac{d^{2} y}{d x^{2}}$ if $x^{2}+y^{3}=1$. Answer:
$>f:=x^{\wedge} 2+y^{\wedge} 3=1 ;$
, implicitdiff (f, y, x, x);
$-\frac{2}{9} \frac{3 y^{3}+4 x^{2}}{y^{5}}$
int - definite and indefinite integration
int(expression, x, options) \int expression $\mathrm{d} x$
int(expression,x=a..b, options)
Double integration
int(expression, $[\mathrm{x}, \mathrm{y}]$, options) $\quad \iint$ expression $\mathrm{d} x \mathrm{~d} y$
int(expression, [x = a..b, y = c..d,], options)
$\int_{c}^{d} \int_{a}^{b}$ expression $\mathrm{d} x \mathrm{~d} y$
expression - algebraic expression; integrand
$x, y \quad-\quad$ names; variables of integration
$a, b, c, d \quad-\quad$ endpoints of interval on which integral is taken
options
(optional) various options to control the type of integration performed.
options - (optional) various options to control the type of integration performed.
$>\operatorname{Int}(f, x)$

$$
\int f \mathrm{~d} x
$$

$>v:=\operatorname{Int}(f(x), x=a . . b) ;$

$$
v:=\int_{a}^{b} f(x) \mathrm{d} x
$$

Double integral
$>\operatorname{Int}(f, x, y)$

$$
\iint f \mathrm{~d} x \mathrm{~d} y
$$

Triple integral
$>\operatorname{Int}(f, x, y, z)$
$\iiint f \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z$

Examples

$$
\begin{aligned}
& \frac{1}{3} \ln (x-1)-\frac{1}{6} \ln \left(x^{2}+x+1\right)+\frac{1}{3} \sqrt{3} \arctan \left(\frac{1}{3}(2 x\right. \\
& \quad+1) \sqrt{3})
\end{aligned}
$$

$>\operatorname{int}\left(\exp \left(-x^{\wedge} 2\right) * \ln (x), x=0 . . i n f i n i t y\right) ;$

$$
-\frac{1}{4} \sqrt{\pi} \gamma-\frac{1}{2} \sqrt{\pi} \ln (2)
$$

A double integral
$>\operatorname{int}\left(x^{*} y^{\wedge} 2,[x, y]\right)$;

$$
\frac{1}{6} x^{2} y^{3}
$$

$>\operatorname{int}\left(x^{\star} y^{\wedge} 2,[x=0 . . y, y=-2 . .2]\right)$;

$$
\frac{32}{5}
$$

Find:

1) $\int_{0}^{1 e^{3} d x}>f:=\operatorname{int}\left(\exp \left(x^{\wedge} 3\right), x=0 . .1\right)$;

$$
f:=\int_{0}^{1} \mathrm{e}^{x^{3}} \mathrm{~d} x
$$

> evalf(\%)
1.341904418
$>\operatorname{int}\left(\exp \left(x^{\wedge} 3\right), x=0 . .1\right.$, numeric $)$
1.341904418

$$
\begin{aligned}
& \quad f:=\int_{a}^{b} \frac{1}{x} \mathrm{~d} x \\
& \text { 2) } f:=\operatorname{int}\left(\frac{1}{x}, x=a . . b\right) ; \\
& \text { Warning, unable to determine if } 0 \text { is between a and } b ; \text { try } \\
& \frac{\text { to use assumptions or use the AllSolutions option }}{} \\
& \qquad f:=\int_{a}^{b} \frac{1}{x} d x
\end{aligned}
$$

$>f:=\operatorname{int}\left(\frac{1}{x}, x=a . . b\right.$, allsolutions $)$

$$
f:=
$$

$$
\left\{\begin{array}{ccc}
\left\{\left(\left\{\begin{array}{cc}
\infty & a=0 \\
-\ln (a) & \text { otherwise }
\end{array}\right)+\left(\left\{\begin{array}{cc}
-\infty & b=0 \\
\ln (b) & \text { otherwise }
\end{array}\right)\right.\right.\right. & \begin{array}{c}
\text { And }(0<b, a<0) \\
0
\end{array} & a= \\
-\left(\left\{\begin{array}{cc}
\text { undefined } & \text { And }(0<a, b<0) \\
-\left(\begin{array}{cc}
\infty & b=0 \\
-\ln (b) & \text { otherwise }
\end{array}\right)+\left(\left\{\begin{array}{cc}
-\infty & a=0 \\
\ln (a) & \text { otherwise }
\end{array}\right)\right. & \text { otherwise }
\end{array}\right)\right.
\end{array}\right.
$$

$$
\text { 3) } \int_{a}^{b} \frac{1}{\mathrm{e}^{x}} d x
$$

$>f:=\operatorname{int}\left(\frac{1}{\exp (x)}, x=a . . b\right.$, allsolutions $)$

$$
f:=\left\{\begin{array}{cc}
\left(\mathrm{e}^{b}-\mathrm{e}^{a}\right) \mathrm{e}^{-b-a} & a<b \\
0 & b=a \\
\left(\mathrm{e}^{b}-\mathrm{e}^{a}\right) \mathrm{e}^{-b-a} & b<a
\end{array}\right.
$$

4)Find integral of $\sin x, \tan x$ and $\ln x$ to each elements.
> map $(\operatorname{int},[\sin (x), \tan (x), \ln (x)], x)$
5) $\int_{0}^{1} \mathrm{e}^{-x^{2}} \ln (x) \mathrm{d} x$
6) Find the third integral of $\cos 2 x, \cot 3 x$ and $\sin ^{-1} 2 x$ to each elements.
7) $\int x \mathrm{e}^{a x} \sin (b x) d x$

