Q1. A. Prove or disprove:

1. The intersection of two subspaces of a vector space is subspace.
2.The set The $M=\left\{a+b x+c x^{2}: b c=0\right\}$ is a basis of vector space $P_{2}(\mathbb{R})$ over a field $\mathbb{R}$.
B. Show that vector $(-11,3,-26)$ is a linear combination of vectors $\{(2,3,-7),(5,1,4)\}$ in vector space $\mathbb{R}^{3}$.

Q2. A. Let $V=\mathbb{R}^{+}$set of all positive real numbers, with addition defined by

$$
x+y=x y,
$$

and scalar multiplication defined by

$$
r x=x^{r}, r \in \mathbb{R} .
$$

Prove that $V$ is a vector space over a field of real numbers.
B. If $V$ is a vector space over a field $\mathbb{R}$ and $M=\{A, B, C\}$ is linearly independent set. Prove that a set $S=\{A+B, A+C, B+C\}$ is linearly independent set in $V$.

