Ministry of Higher Education and Scientific research

Department of Mechanical and Mechatronics

College of Engineering

Salahaddin University – Hawler

Subject: Heat Transfer

Course Book – Third Year

Lecturer's name: Azhar Kareem Mohammed

Academic Year: 2019 -2020

Course Book

1. Course name	Heat Transfer		
2. Lecturer in charge	Azhar Kareem Mohammed		
3. Department/ College	Mechanical and Mechatronics Eng. Dept.		
	College of Engineering		
4. Contact	e-mail :- azhar.mohammed@su.edu.krd		
	Tel:		
5. Time (hr. / week)	Theory: 4 hr and Practical: 2hr		
6. Office hours	4 hours in days		

7. Course overview:

This course covers fundamentals of heat transfer and applications to practical Problems in energy conversion and conservation. Emphasis will be on developing a physical and analytical understanding of conductive, convective, and radiative heat transfer, as well as heat transfer with phase change. Students will develop an ability to apply governing principles and physical intuition to solve problems.

8. Course Objective:

After studying this course the student will be learned:

• Ability to demonstrate general knowledge of heat transfer [conduction, convection, radiation].

• Ability to formulate and solve steady and unsteady problems in one or more dimensions in different geometries with or without generation.

• Ability to construct simple models that capture the salient features of heat transfer problems.

• Ability to design heat and mass transfer processes and equipment.

9. Student's Obligation

- Regular attendance is required according to the university rules.
- > The use of mobile phone during the class is prohibited.
- Only the students who are officially enrolled can attend the class, guests and children are not admitted.
- > Daily participation and conducting assignments are required.

10. Forms of Teaching

Different forms of teaching will be used to reach the objectives of the course

- 1. Power point for main parts (head titles, definitions, objectives, figures, design, tables and charts ...etc) each subject.
- 2. White board will be used for presenting mathematical equations and solving examples.

For the student to achieve a level of excellence in this subject, the following points should be given utmost consideration:

Ministry of Higher Education and Scientific research

- 1. Class attendance on regular basis for the purpose of learning.
- 2. Active participation in class discussions
- 3. Reviewing the lecture notes and topics on weekly basis, noting the ambiguous points, if any, and requesting clarification during instructor office hours
- 4. Visiting the library on regular basis and checking the Internet for other approaches or simplifications of topics and ideas
- 5. Giving adequate and sufficient priority to preparing for weekly, monthly and final tests.

11. Assessment Scheme

Breakdown of overall assessment and examination

Examination(deg.)		
Semester 1	30	
	10	(Quiz ,assignment and activities)
Total	40	
Final examination	60	
Total	100	

12. Course Reading List and References:

Textbook:-

• J.P.Holman, *Heat Transfer*, Tenth Edition, McGraw-Hill (2010).

References:-

- Yunus, A. C., *Heat and Mass Transfer*, McGraw-Hill.
- F.P.Incropera , Fundamentals of Heat and Mass Transfer ,Seven Edition.
- C.P.Kothandaraman Fundamentals of Heat and Mass Transfer, Third edition.

13. Course Reading List:

14 Weeks: From the 01 October 2019 to 24 December 2019				
Weeks No.	Syllabus	Date		
1	Modes of Heat Transfer (Conduction, Convection,			
	Radiation), Thermal Conductivity			
	Steady-State Conduction - One Dimension (The			
	plane wall (One material, Composite wall), Radial			
2	systems (Cylindrical, Spherical))			
3	The Overall Heat Transfer Coefficient			
3	Critical Thickness of Insulation			
	Heat Source Systems (Plane Wall with Heat			
	Sources, Radial Systemswith Heat Sources [Solid			
	Cylinder with Heat Source, Hollow Cylinder with			
4	Heat Source]			
	Conduction-Convection Systems, Extended			
5	Surface – Fins (Fin Effectiveness, Fin			

Ministry of Higher Education and Scientific research

Ministry of Higher	Ministry of Higher Education and Scientific research				
	Performance, Corrected Length (Lc)), Fin Types, Fin Heat Exchanger Design				
5	Thermal Contact Resistance				
6	Unsteady State Conduction, Types of boundary conditions				
6	Lumped Heat Capacity System, Applicability of Lumped Heat Capacity System				
7	Transit Heat Flow in a Semi-infinite Solid (Constant wall temperature, Constant heat flux), Convection Boundary Conditions				
7	Heisler,s Charts				
8	Principles of Convection (Viscous Flow, Flow in Pipes)				
9	Laminar Boundary Layer on a Flat Plate				
9	The thermal Boundary Layer, Heat Transfer Coefficient, The Relation Between Fluid Friction and Heat Transfer				
10	Turbulent Boundary Layer Heat Transfer, Turbulent Heat Transfer Based on Fluid-Friction Analogy, Turbulent Boundary Layer Thickness				
11	Heat Transfer In Laminar Tube Flow, The Bulk Temperature				
11	Empirical and Practical Relations for Forced- Convection Heat Transfer				
12	Flow Across Cylinder and Spheres				
13	Flow Across Tube Banks				
14	Free Convection heat transfer				