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Abstract
In this research, we have produced Al/CdS nanoparticles-CdO/p-si/Al photodetetor and investigated its optical and electrical
characteristics for various optoelectronic applications. The CdO thin film was covered by using sol-gel spin coating method onto
the silicon, followed by CdS nanoparticles constitution by the help of SILAR technique. In order to examine the morphological
and optical characteristics of fabricated photodetector, the field emission scanning electron microscopy and UV-Vis spectroscopy
were utilized, and the band gap of the prepared film was determined as 2,17 eV with the help of these analyzes. The current
behavior against the varying voltage values were investigated for the different intensities of solar light conditions and the
significant diode parameters were computed by the use of this measurements. As a result of this computation, the barrier height
value was found to be 0.49 eV while the ideality factor value was 3.2, and the photoresponse of the photodetector was measured
as approximatelly 2.65 × 103. Besides, the transient photocurrent and photocapacitance charactersitics were examined for distinct
light conditions. Finally, the interface states were calculated from the capacitance/conductance–voltage (C/G–V) measurements.

Keywords Optical characteristics .CdSnanoparticles .CdOthin film .Electricalcharacteristics .Sol-gelmethod .SILARmethod

1 Introduction

The wide application range of photodetectors such as in fire
alarm, communication, automotive industry and missile early

warning systems, etc. has triggered enormous research interests
in the photodectors [1–3]. So far various photodetectors have
been fabricated using 2D semiconductor thin film based metal
oxides like ZnO [4], TiO2 [5], SnO2 [6]. One of the prominent
metal oxide is Cadmium oxide (CdO) which has a direct band
gap of 2.24 eV semiconductor and μ = 216 cm2 V−1 s−1 mobil-
ity value [7]. High mobility value is necessary for a fast re-
sponse photodetector. CdO has been explored extensively for
use in optoelectronic devices such as solar cells, transparent
electrodes, gas sensors, diodes and photo-detectors [8–12]
There are some reports on CdO/Si hetrojunctions,based on
these reports, have well spectral response in the region of blue
and infrared with visible wavelenght. Because of their simplic-
ity, the hetrojunctions shows a promising potential to be used as
photodetectors and instead of traditional silicon photodetectors
[13]. Yakuphanoglu et al. [14] has fabricated n-CdO/p-Si de-
vice by the use of sol–gel spin coating technique and examined
the electrical features of the diode. The authors reported that the
n-CdO/p-Si is suitable to be used in photoconductive mode
rather then photovoltaic mode. Hence the photodiode device
could be used as a photodetector. Karataş et al. [15] has pre-
pared a heterojunction whisch is copper doped cadmium oxide
nanostructure on p-type silicon semiconductor and obtained the
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ideality factor and barrier height as 5.99 and 0.69 eV, respec-
tively. Farag et al. [16] has investigated the performance of
undoped and Zn doped cadmium oxide thin films on p-Si
heterojunctions fabricated by sol gel spin coating technique.
Sağlam et al. [17] have used SILAR method to fabricate Cd/
CdO/n–Si/Au–Sb and studied the electrical characteristics of
the diode. However, the carrier mobility of these wide bandgap
materials is affected by crystallographic imperfections, surface
imperfections and low crystallizations. The performances of the
produced photodetector are far from the expectations. Recently,
the applications of nanomaterials, for example, gold nanoparti-
cles (NPs), carbon materials and semiconductor quantum dots
(QDs), have attracted the attention of researchers to fabricate
the high performance photodetectors or optoelectronic devices
[18–20]. Metal nanoparticles reason scattering, in the sensitive
layer, that rised optical absorption, and the cause of this situa-
tion is localized surface plasma resonance, hence providing an
efficient way to enhance the responsivity of the photodetectors
[21, 22]. Jianan et al. [23] have fabricated the photodetector by
embedding the Pt-NPs into the ZnO film to enhance the
responsivity of the device.

Nanoparticles present the researchers to perfect optoelec-
tronic properties such as solution processability, high absorp-
tion coefficient, low-cost availability, tunable band gap and
multiple exciton generation possibility. The nanoparticles
charge trapping property plays an important role in photodetec-
tors by separating electron-hole pairs efficiently at the interfaces
[24, 25]. Ludonget al. [24] have reported heterojunction photo-
detector which is ZnO nanoparticles (QDs) built with Zn2SnO4

nanowire, with the current ratio up to 6.8 × 104 from light to
The photocurrent and responsivity are observed 10 times higher
for the QDs built with nanowire Soylu et al. [26] have fabricat-
ed low reverse current CdSe quantum dots/p-Si heterojuntion
and studied its photodiode performance. Ying et al. [27] have
obtained InAs QDs based avalanche photodetector which
shows six times highermultiplcation in comparison to the diode
without QDs. In this research, we prepared CdO/p-Si
heterojunction decorated by the cadmium sulfide nanoparticles
by SILAR method. The SILAR method is the cheapest and
easiest technique to produce quantum dot solar cells by chang-
ing the number of deposition cycles and solution concentrations
with the ability to control the effect of quantum confinement.
However, its reproducibility and the no need for high tempera-
ture are very important advantages for synthesis techniques.
Furthermore, the substrate material does not need to be of high
quality, and this technique is applicable without the need for a
vacuum medium which must be in most coating techniques.

The aim of this research is to produce novel photodetector
by the use of CdS-quantum dots decorated cadmium oxide thin
film interlayer and compare morphological, photoelectrical and
electrical characteristics of this device. The other aim of this
research work is to fabricate photodetector which has the high
performance with fast response duration and high gain by

efficient collection of photogenerated carriers, and transporting
these charge carriers to the electrode.

2 Experimental Techniques

CdO thin film was synthesis using pure cadmium acetate
[CH3COO)2 Cd.2H2O] dissolved in 10 ml of 2-
Metoxyethanol with ethanolamine as a stabiliser. At the room
temperature, the solution was stirred for 2 h at 60 °C. In order to
prepare the thin films, sol-gel spin coating method has been
utilized. The films were coated on the p-type silicon substrate
with 5–10 Ω cm resistivity, (111) surface orientation and thick-
ness 600 μm, and on the glass substrate. The p-type silicon
substrate, at the spin coating speed 3000 rpm for 30 s, dried at
150 °C and the glass substrate to obtain the obtical properties,
at1500 rpm for 15 s, dried at 250 °C. In order to obtain rigid
film, the prepared films were annealed at 450 °C for 1 h. Then
nanoparticles were grown on the films using SILAR technique.
For CdS nanoparticles, two solutions of 0.5 M of [CH3NO3)2
4H2O] dissolved in ethanol and 0.5 M of Na2S dissolved in
distilled water were prepared and stirred at room temperature
for an hour. The prepared films (one on glass substrate and other
on p-type Si) were depth firstly in [CH3NO3)2 4H2O] solution
for 5 min then cleaned with few drop of distilled water then
heated on hot plate at 250 °C for 10 min Afterward, cooled
down depth in Na2S solution for 5 min then cleaned by few
drop of ethanol also heated at hotplate for 10 min at 250 °C, the
same process were continued four time. Finally, the films were
subsequently annealed for an hour at 450 °C in a furnace. After
coated CdO thin film and CdS on p-type Si the diode fabricated
and formed with Al contact by the thermal evaporating system
and used the physical mask with contact area 7.85 × 10−3. The
energy-band diagram of the fabricated structure is given in
scheme 1. The optical study was implemented by the optical
transmission spectra at room temperature, the determination of
elemental composition and surface morphology investigation
were examined by Energy Dispersive Spectroscopy (EDX)
and FE-SEM, respectively. The current/capacitance-voltage
(I/C-V) features of the photodetector-based device were deter-
mined and executed by the usage of the KEITHLEY 4200, and
200 W halogen lamp with the light intensity measured by the
solar power meter (TM 206) was utilized to investigate the
photoresponse behaviour of photodetector.

3 Results and Discussion

3.1 Optical Property of CdS Nanoparticles/CdO Thin
Film

The optical properties of CdS nanoparticles/CdO thin film on
the glass substrate were studied by using UV-Vis
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spectroscopy. Such as Fig. 1, exhibits the transmittance spec-
tra in the wavelength range 200–1200 nm respectively. The
film was roughly 22–65% transparent in the visible region
400–800 nm. Similar results for CdO transmittance were ob-
tained between 20 and 75% by Pathak et al. [28]. In this
research, the transparent conductive ZnO-CdO films prepared
by the sol-gel technique, and the transparency values de-
creased with increasing the CdO content in these films.
Reducing the permeability value with the increased CdO con-
tent in the prepared materials may be due to the from band-to-
band absorption of CdO films having a smaller band gap than
the ZnO, or the increase of optical scattering by light to the
film surface. Comparing with [28] it shows that the grown
nanoparticles decrease the transmittance.

The UV-Vis absorption spectra is given in Fig. 2, and the
optical bandgap Eg of the fabricated device is calculated by the
use of Tauc relation eq. (1). The values of Eg were determined
by the use of Tauc’s graphs between hν and (αhν)2. The ex-
perimental bandgap of fabricated device is defined the value at
(αhν)2 = 0 point of the line drawn to the linear region of the
graph. The estimated bandgaps of samples were presented in
Fig. 2, show that the bandgap value of Cds/CdO of was
2.17 eV, same as pure CdO.

ahvð Þ2 ¼ B hv−Eg
� �� � ð1Þ

in equation above, hv, Eg, α and B stands for the photon
energy, the optical band gap energy, absorption coefficient
and the constant, respectively.

3.2 Morphology Properties of CdS Nanoparticles/CdO
Thin Film

The scanning electron microscope images for CdS/CdO were
shown in Fig. 3. The images were taken at 5000x and
100,000x magnifications. It is seen that CdS layer is created
from nanoclusters at 100000x magnification. SEM images of
the quantum dot film above CdO thin film shows that the CdO
film was deposited by SILAR method of CdS NPs. The men-
tioned images obviously exhibit that these conditions yield the
desired discontinuous CQD films. In addition to these, the
elemental composition with the EDX spectra given in Fig. 4
validates that the desired materials which are cadmium, oxy-
gen and sulphur were accomplishedly deposited on film.

Fig. 1 Transmittance spectra of CdS-CdO film

Fig. 2 Tau’s plots of CdS-CdO film

Fig. 3 The SEM images of CdS nanoparticles-Cadmium oxide

Scheme 1 The energy-band diagram of fabricated structure with CdS-
CdO interfacial layer
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3.3 Current–Voltage Characteristics
of Al/CdS-CdO/P-Si/Al Diode

In order to understand the electrical properties of produced
devices, I-V measurements are crucial. Some electrically im-
portant parameters can calculated using these measurements
like barrier height, reverse bias leakage current, ideality factor
and series resistance [29]. The experimental reverse and for-
ward bias I-V characteristics of the fabricated Al/CdS-CdO/
p-Si/Al diode were studied at room temperature under various
light illuminations and dark, which are demonstrated in Fig. 5.
A good rectifying behavior is demonstrated by the diode to-
gether with a rectification ratio of 9.1 × 104 at ±5 V for dark
condition and with low voltage dependence of current in re-
verse bias and an growing rise of current in the forward bias.
Furthermore, as can be seen from Fig. 5, the measured recti-
fication ratios for fabricated device for different light intensi-
ties are in order of approximately 102. This difference in the I-
V curves for dark and light conditions arises from the fact that

the reverse bias current of the device increases with the effect
of incoming light. Under the dark condition, when reverse
bias voltage is applied the reverse current increases linearly
and doesn’t saturate. The leakage current depends on the ap-
plied voltage and does not saturate. Leakage current should
not be mixed with saturation current, which is independent
from the applied voltage. This reverse leakage current arises
from the shunt resistance across the junction. Reverse bias
leakage current is undesirable in practical applications therefor
it should be kept minimum at a negligible level [30]. A low
insignificant leakage current shows a good interface between
the Al/CdS nanoparticles-CdO or CdS nanoparticles-CdO/p-
Si of the hetrojunction. As seen from the I-V characteristics
when the light fall on the junction, the reverse leakage current
increases which is due to the generation of charge carriers. It
could be seen that the diode shows the Schottky behavior.
Therefore, the current–voltage properties of the diode could
be analyzed by the standard thermionic emission theory. In
this context, I-V properties were analyzed as a function of
voltage using the following formula. [31, 32],

I ¼ I s exp
qV−IRs

nkT

� �
−1

� 	
ð2Þ

where the electron charge is q, the Boltzmann constant is k, the
voltage is V, the absolute temperature is T, the ideality factor is
n, the effective diode area is A and the saturation current is Is,
which are obtained from the straight line intercept value of
ln(I) at zero voltage expressed as [32],

I s ¼ AA*T2exp
qΦb

kT

� �
ð3Þ

where A* is the effective Richardson’s constant and its value is
32 A/cm2 K2 for p-Si. The diode ideality factor was deter-
mined in the measurements of Al/CdS-CdO/p-Si/Al structure
by the use of next equation and obtained to be 3.2, from the
slope of the linear region of forward bias showed in Fig. 5.

Fig. 5 I–V plots of the Al/CdS-CdO/p-Si/Al diode under various
illuminations

Fig. 4 EDX spectrum of CdS
quantum dots-Cadmium oxide
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n ¼ q
kT

dV
d lnIð Þ

� �
ð4Þ

Moreover, the barrier height value was found 0.49 eV by
the usage of following formula, which was obtained by
rearranging Eqs. 2 and 3;

Φb ¼ kTln
AA*T 2

I s

� �
ð5Þ

These numerical data show a non-ideal behavior was ex-
hibited by the diode because of the ideality factor quite large
than unity and, the upland ideality factor value shows the
existence of barrier height metal/semiconductor inhomogene-
ities and the presence of interface states arising from the native
layer of oxide [33]. Moreover, the photoresponse properties
were demonstrated under various illuminations in Fig. 5, since
the current rises vigorously together with exposed light. The
growth of the current in the negative voltage region with the
exposed light has shown that the diode operates in a photo-
voltaic mode and that the diode has a photocurrent and
photovoltage.

For further to understanding photoresponse analysis of the
fabricated device, the measurements of transient photocurrent
were practiced by the use of various light intensities, which are
20, 40, 60, 80, and 100 mW/cm2 as given in Fig. 6(a). Within
the turning on state, it is seen that the diode current swiftly
reached to a definite level and then to the maximum value by
stages. Afterwards, in the turning off state, the photocurrent
get to its beginning stage.

In addition, the rate of current Ion/Ioff for the produced
photodetector was approximately 2650. This value was calcu-
lated by the use of the transient photocurrent measurements,
and it is known as the ratio of the average of the measured
current value in the on state to the average of the current in the
off state. It is revealed that the device exhibited a high on/off
ratio. When the photodetector was exposed with light, the
quantities of the photogenerated charge carriers rise and the

electrons support the current. Following the light-off, the
numbers of free electrons drop as well as the current of the
photodetector. The photoconducting characteristics of the di-
ode were based on the trap stations presented in the CdO
material. The photocurrent differs with illumination from on
to off states resulted from the deep levels charge carriers trap-
ping [34].

The capacitance-time (C-t) measurements of Al/CdS-CdO/
p-Si/Al device for 10 kHz frequency value and different illu-
mination conditions were presented in Fig. 6(b). Obviously,
the obtained that photo-capacitance rised with intensity of
light power increasing. This expressly means that the investi-
gated electronic device shows a photoresponse behavior, and a
photo-conducting and photo-capacitive behaviour are demon-
strated by the prepared device and this device could be easily
utilized as a photodetector. The photodetector reaction time
towards exposure light identifies its reply for quick changing
optical signal, and this situation is a very significant in opto-
electronic applications [35]. The photocapacitance ratios of
Ion/Ioff for the generated photodetector was about 11.59.
Furthermore, the photoresponse alteration with the changing
exposed light densities showed in Fig. 7(a), Ioff were taken at 1
(s) and Ion at 18(s) for studied sample.

The diode shows low short circuit current, upland photo-
current rates and photoresponse behaviour with low open cir-
cuit voltage. In the distrubutions of interface states, in order to
characterize of photocurrent relatively explaining non-unity
ideality factors could be investigated. The relationship be-
tween the exposed solar illumination intensity and photocur-
rent could be analyze by the following formula [36, 37].

Iph ¼ ∝Pm ð6Þ
where α, P and Iph terms stand for a constant, the illumination
intensity and the photocurrent, respectively. The graph of Iph
versus P is demonstrated in Fig. 7b. The determined m value
was found as 1.0. It is showed in the counted m value that the
photocurrent indicated a linear behavior, and the ranging rates
between 0.5 and 1 are so prevalent in imperfect materials and
are expected as an exponential trap distribution [38]. They
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Fig. 6 a Current transient measurements, b Transient photocapacitance of Al/CdS-CdO/p-Si/Al diode
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have reported 1.2 of m value in brief. The existence of expo-
nential dispersion of impurity levels in the forbidden band of
CdS-CdO can manage the photoconducting mechanism and
the produced device can be utilized as an optical sensor in the
variety of optoelectronic practices [39–41]. The response
speed, which is a critically parameter, controls the photode-
tector capability in monitoring a fast-varying optical signal
[42]. Moreover, it is indicated that a permanent dispersion of
localized interface states entities in the studied materials’ mo-
bility gap [40].

3.4 Analysis of Capacitance-Voltage and Interface
State of Al/CdS-CdO/p-Si/Al Diode

The C-V and G-V characteristics examined at room tempera-
ture as a function of frequency and voltage for the Al/CdS-
QDs/CdO/p-Si/Al photodetector device were given in Figs. 8
and 9, respectively. The conductance and capacitance mea-
surements were performed from the strong accumulation re-
gion (-5 V) to the strong inversion region (5 V). As clearly
seen from Figs. 8 and 9, C and G values decreased rapidly
with increasing frequency. The behavior of fabricated device

is different from the ideal situation because of existing local-
ized interface states in the CdS-CdO. The capacitance values
of device is raised by the reduce of frequency, as the traps
begin to reply to the AC signal. This situation may be due to
surplus capacitance causing from the presence of interface
states. In addition to this, the interface state values cannot react
the AC signal and the traps cannot respond at higher frequen-
cies. Besides of these, it can be seen that there is a peak at the
capacitance characteristics of the fabricated device, and this
abnormal peak begin to disappear as they go to higher fre-
quencies. These behaviors of capacitance and conductance
characteristics are have attributed the existence of series resis-
tance and interface states.

Such behaviors of C/G–V curves suggest that there are
different types of the interface state density at the interface
between the semiconductor and deposited films with diverse
life times. If the measurements of capacitance are
experimented at adequately high frequencies, the charges in
the interface states are not able to contribute to capacitance of
the prepared device. This situation will formed when the time
constant is so extend to allow the charge to act inside and
outside of the interface state density in reply to applied signal
[43, 44].
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Fig. 7 a Photoresponse versus Power and b Plot of Iph vs. P of for Al/CdS-CdO/p-Si/Al diode
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Fig. 8 The frequency dependent (C–V) characteristics of Al/CdS-CdO/
p-Si/Al diode
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Fig. 9 The frequency dependent (G–V) characteristics of Al/CdS-CdO/
p-Si/Al diode
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The examined C-Vand G-V data under all bias voltage and
different frequencies were corrected by considering series re-
sistance effects. In this way, the real capacitance and conduc-
tance values of fabricated Al/CdS-CdO/p-Si/Al photodetector
device [45–47]:

Cadj ¼
G2

m þ wCmð Þ2

 �
a2 þ wCmð Þ2 Cm ð7Þ

Gadj ¼
G2

m þ wCmð Þ2
h i
a2 þ wCmð Þ2 a ð8Þ

a ¼ Cm− G2
m wCmð Þ2

h ih i
Rs ð9Þ

Cadj and Gadj terms in above equation are series resistance
adjusted capacitance and conductance values of device, re-
spectively. The varying frequency effects on the Cadj–V and
Gadj–V graphs were given in Figs. 10 and 11, respectively. At
forward bias regions, the conductance and capacitance values
do not display any alteration with changing of frequency. On
the contrary of this, the adjusted capacitance and conductance
values changed with changing frequency, and this case can be
seen in Figs. 10 and 11. The maximum peak value of the
adjusted capacitance shifted to high voltage by the increase
of frequency. In addition, the intensity of peaks are decreased
by the increase of frequency and this is attributed to exist of
interface states of prepared device. In Fig. 11, it was moni-
tored that the maximum peak value in adjusted conductance
raised with rising of frequency. Thus, the observed peaks in
the Cadj and Gadj graphs verify the capacitive influence of
practiced frequency to the interface states. The interface states
of diodes do not make a contribution to capacitance for fre-
quency values at higher than 500 kHz [48].

In the view of such information, the interface state density
(Dit) of the device can be found by next formula, which is
known Hill-Coleman equation [49]:

Dit ¼ 2

qA

Gadj=w
� �

max

Gmax
wCox


 �2
þ 1−Cm

Cox


 �2
� 	 ð10Þ

In above equation, Cox, (Gadj/w)max, w, q, A and Cm terms
stand for the capacitance of the insulator layer, measured con-
ductance, angular frequency, electron charge, metallic contact
area and measured capacitance, respectively. The Dit values
for the fabricated diode-based photodetector device were de-
termined from the peak values in Gadj vs. V plots by the use of
Eq. (8) and were demonstrated in Fig. 12. As seen in men-
tioned figure, the Dit the value was found to be about 7 ×
1011 eV−1 cm−2. The Dit values reduced by the increment of
frequency as an exponential, and achieved to approximately
fixed at higher frequencies. As seen in Fig. 12, the density of
interface states depends on frequency vigorously at low fre-
quencies, and this case cause an increase in the capacitance of
the diode. Conversely of it, the density of interface states
independent of frequency at higher frequencies. This phenom-
enon, which occurs in frequency-dependent interface states,
suggests that the following incidence of interface charges at
lower frequencies is greater than higher frequencies. The Dit

value of the Al/CdS-CdO/p-Si/Al device is lower than that of
the Al/CdO/p-GaAs SBD device. This suggests that the
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at various frequencies
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interface quality of the studied device is better than that of Al/
CdO/p-GaAs SBD device [50].

The existing of some peaks in the adjusted conductance
graphs of the diode are expressed by using series resistance
term. The series resistance (Rs) of the fabricated device is
obtained from the frequency-dependent conductance and ca-
pacitance characteristics in the accumulation region [51]:

Rs ¼ Gm=wCmð Þ2
1þ Gm=wCmð Þ2

1

Gm
ð11Þ

The Rs values were found as a function of voltage at dif-
ferent frequencies and the voltage-dependent series resistance
values are shown in Fig. 13. As seen in the series resistance
graph, there is a peak dependent on the frequency at about
−0.6 V, and this peak is lost at adequately high frequencies.
Besides, it is obviously viewed that the series resistance of
device is related on both voltage and frequency. The existence
of Rs is attributed to specific dispersion of interface states
density and existence of insulator interfacial layer [28, 52].
As the cause of these behaviors may be evaluated that the trap
charges have sufficient energy to run away from the traps
which are located at the metal-semiconductor interface.
Moreover, at high frequencies, the interface states charges
cannot track alternative current signal [32, 53].

4 Conclucions

In this study, processes of device fabrication, morphological,
optical and electrical characteristics of Al/CdS-CdO/p-Si/Al
photodetector were investigated. The EDX and SEM images
were analyzed for chemical composition and morphological
characteristics. Electrical properties were investigated based
on thermionic emission theory by the use of current-voltage
and capacitance-voltage measurements. In addition to these,
photo-transient measurements were also interpreted for more

understanding electrical properties. Electrical characteristics
of prepared device such as barrier height, series resistance
and ideality factor were obtained. The device was found to
exhibit a rectification behavior of approximately 4.3 × 104.
Besides, the electrical characteristics of device varied with
changing intensity of exposed light. Moreover, transmittance
and optical band gap of the synthesized CdO films with CdS
nanoparticles were investigated. The experiments exhibit that
the fabricated novel device is very sensitive to exposure light.
Consequently, investigated Al/CdS-CdO/p-Si/Al device could
be utilized as a photodetector that has good performance in
developing photodetector technology.Moreover, it can also be
used as a photodiode due to its electrical characteristics.
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