## Chapter 4

## 1. The hydrostatic force on a horizontal plane surface

The pressure on the horizontally immersed surface is uniformly distributed. It represents the weight of the liquid over the surface.

$$
\begin{aligned}
& P=\rho \cdot g \cdot h \\
& F=P \cdot A=\rho g h . A \\
& F=\rho g V
\end{aligned}
$$



The resultant force F passes through a point on the plane surface defined as the center of pressure (CP), for a horizontal plane CP will coincide with the centroid (C) of the surface.

- Note that the force acting downwards on the upper face of the plane is equal to the force acting upward on the lower face.


## 2. The hydrostatic force on an Inclined Plane Surface:



Consider the force on a differential area (dA) as shown.

$$
\begin{gathered}
d F=\rho g h \cdot d A \\
d F=\rho g L \sin \theta \cdot d A
\end{gathered}
$$

Integration over the area (A) of the surface gives:

$$
F=\rho g \cdot \sin \theta \int_{A} L d A
$$

But the integral is the moment of the entire area (A) about the axis $O-O$ and it equals to:

$$
\begin{gathered}
\int_{A} L d A=L_{C} A \\
F=\rho g \cdot \sin \theta \cdot L_{C} A \\
F=\rho g \cdot h_{C} A
\end{gathered}
$$

But

$$
\rho g h_{c}=P_{c}
$$

Where
$P_{c}$ is the pressure at the centroid of the surface.

## The Center of pressure:

Consider the moment produced by the differential force dF about o-o.

$$
\begin{gathered}
d M=L \cdot d F \\
d M=\rho g \cdot L^{2} \sin \theta \cdot d A \\
M=\rho g \cdot \sin \theta \cdot \int_{A} L^{2} d A
\end{gathered}
$$

The quantity $\int_{A} L^{2} d A$ is the second moment of area (A) about the axis o-o.

$$
\begin{gathered}
\int_{A} L^{2} d A=I_{o-o} \\
M=\rho g \cdot \sin \theta \cdot I_{o-o}
\end{gathered}
$$

But

$$
\begin{gathered}
M=F \cdot L_{p} \\
M=\rho g \sin \theta L_{c} A \cdot L_{p}
\end{gathered}
$$

Thus

$$
L_{p}=\frac{I_{o-o}}{L_{c} A}
$$

Transferring the axis of rotation from ( $\mathrm{o}-\mathrm{o}$ ) to the centroid of the plane surface using the parallel axis theorem,

$$
\begin{gathered}
I_{o-o}=I_{c}+A . L_{c}^{2} \\
L_{p}=\frac{I_{c}}{L_{c} A}+L_{c}
\end{gathered}
$$

or

$$
L_{p}-L_{C}=\frac{I_{c}}{L_{c} A}
$$

## The Pressure Prism



- Force on the Left wall $\mathrm{F}_{\mathrm{L}}$

$$
\begin{aligned}
F_{L} & =\rho g \cdot h_{c} \cdot A \\
F_{L} & =\rho g \frac{h}{2} \cdot h w
\end{aligned}
$$

- Force on the Right wall $\mathrm{F}_{\mathrm{R}}$

$$
\begin{gathered}
F_{R}=\rho g \cdot h_{c} \cdot A \\
h_{c}=\frac{h}{2}, \quad A=\frac{h}{\sin \theta} w \\
F_{R}=\rho g \frac{h}{2} * \frac{h}{\sin \theta} w
\end{gathered}
$$

- Force on the Bottom $\mathrm{F}_{\mathrm{B}}$

$$
\begin{aligned}
& F_{L}=\rho g \cdot h_{c} \cdot A \\
& F_{L}=\rho g \cdot h \cdot L w
\end{aligned}
$$

## Example

Calculate the resultant force acting on one side of the horizontally immersed plane surface shown below and find the center of pressure.
Solution

$$
\begin{aligned}
& F_{\Delta}=\rho g \cdot h_{c} \cdot A \\
& F_{\Delta}=9810 * 1.5 *\left[\frac{1 * 2}{2}\right]=14.71 \mathrm{kN} \\
& F_{\square}=\rho g \cdot h_{c} \cdot A \\
& F_{\square}=9810 * 1.5 * 3 * 2=88.29 \mathrm{kN} \\
& F_{T}=F_{\Delta}+F_{\square} \\
& F_{T}=14.71+88.29=103 \mathrm{kN} \\
& M_{A B}=F_{T} * x_{c p} \\
& F_{T} * x_{c p}=\left[F * x_{c p}\right]_{\Delta}+\left[F * x_{c p}\right]_{\square} \\
& 103 * x_{c p}=\left[14.71 *\left(3+\frac{1}{3}\right)\right]+[88.29 * 1.5] \\
& x_{c p}=1.7617 \mathrm{~m} \\
& M_{A D}=F_{T} * y_{c p} \\
& F_{T} * y_{c p}=\left[F * y_{c p}\right]_{\Delta}+\left[F * y_{c p}\right]_{\square} \\
& 103 * y_{c p}=\left[14.71 *\left(\frac{2}{3}\right)\right]+[88.29 * 1] \\
& y_{c p}=0.95 \mathrm{~m}
\end{aligned}
$$

