Ministry Of Higher Education and Scientific Research Salahaddin University-Erbil College of Education Department of Mathematics

Finite Mathematics

Lecturer's name

Bushra N. Abdulgaphur

Academic Year /2023-2024

Second Semester

First stage

Chapter one

The Complex numbers

A complex number is the sum of a real number and an imaginary number. A complex number is of the form a + ib or (a, b) and is usually represented by z. Here both a and b are real numbers. The value 'a' is called the *real part* which is denoted by **Re**(z), and 'b' is called the *imaginary part* **Im**(z). Also, *ib* is called an *imaginary number*.

 $C = \{a + bi: a, b are real numbers\} = \{(a, b): a, b are real numbers\}$

Representation of a Complex Number

Complex Numbers

Some of the examples of complex numbers are

$$2 + 3i$$
, $-6 - 5i$, $12 + i32$ $\sqrt{7} + 3i$, $\frac{15}{2} - 5i$ etc.

Power of *i*

•
$$i = \sqrt{-1}$$

•
$$i^2 = -1$$

•
$$i^3 = i \cdot i^2 = i(-1) = -i$$

• $i^4 = (i^2)(i^2) = (-1)(-1) = 1$

- $i^{4n} = 1$
- $i^{4n+1} = i$
- $i^{4n+2} = -1$
- $i^{4n+3} = -i$

Complex Number Formulas

Addition

Two Complex numbers are <u>added</u> by adding the real and imaginary parts of the summands. That is to say:

$$(a + ib) + (c + id) = (a + c) + (b + d)i$$

 $(2 + 3i) + (5 - 4i) = (2 + 5) + (3 - 4)i = 7 + (-1)i = 7 - i$

Subtraction

Two Complex numbers are <u>subtraction</u> by subtracting the real and imaginary parts. This is defined by

$$(a + ib) - (c + id) = (a - c) + (b - d)i$$
$$\left(\frac{2}{3} + i\right) - \left(\frac{5}{3} + 4i\right) = \left(\frac{2}{3} - \frac{5}{3}\right) + (1 - 4)i = \frac{-3}{3} - (3)i = -1 - 3i$$

Multiplication

The multiplication of two complex numbers is defined by the following formula:

$$(a + ib)(c + id) = (ac - bd) + (bc + ad)i$$

(2 + 4i)(1 + 3i) = (2 * 1 + 2 × 3i + 4i * 1 + 4i × 3i)
= 2 + 6i + 4i + 12i²
= 2 + 10i - 12 because i² = -1
= -10 + 10i

Division

The division of two complex numbers is defined in terms of complex multiplication, which is described above, and real division. Where at least one of c and d is non-zero:

$$\frac{a+bi}{c+di} = \left(\frac{ac+bd}{c^2+d^2}\right) + \left(\frac{cb-ad}{c^2+d^2}\right)i$$

$$\frac{3-2i}{1+3i} = \frac{3-2i}{1+3i} \times \frac{1-3i}{1-3i} = \frac{3-9i-2i+6i^2}{1+3i-3i-9i^2} = \frac{-3-11i}{10}$$

Example: (H.W) Simplify the following

1-
$$4(3 + 2i) - 5(2 - 6i) + (5 + 8i)$$
.
2- $3(1 + 2i) + 5(3 + 2i) - (6 + 2i)$.
3- $(5 - 2i)(3 + 5i)$.
4- $(2 + 3i)(2 - 5i)(3 + 2i)$.
5- $3(3, -1) - (-6, 3) + 2(-2, -3)$.

Example: (H.W) Find the value of *x* and *y* of the equation

1-
$$(3,4)2 - 2(x, -y) = (x, y).$$

2- $\left(\frac{2+i}{2-i}\right)^2 + \frac{1}{2x+iy} = 2 + i.$
3- $(1+4i)^2 - 2(x-yi) = x + yi.$
4- If $\frac{x-iy}{x+iy} = a + ib$, then prove that $a^2 + b^2 = 1.$
5- *Prove that* $\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^3 = 1.$

Conjugate and absolute value of a Complex Numbers

Let $\mathbf{z} = \mathbf{a} + \mathbf{i}\mathbf{b}$ be a complex number.

The *absolute value* of **Z** is represented by $|\mathbf{Z}|$. Mathematically, $|\mathbf{Z}| = \sqrt{a^2 + b^2} \ge 0$. The *conjugate* of "**z**" is denoted by $\overline{\mathbf{Z}}$ Mathematically, $\overline{\mathbf{Z}} = \mathbf{a} - \mathbf{i}\mathbf{b}$

Example: Find the *absolute value* and the *conjugate* of z = 3 - 4i. *Solution:*

 $|\mathbf{z}| = \sqrt{a^2 + b^2} = \sqrt{3^2 + (-4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5$ And $\overline{\mathbf{Z}} = \mathbf{a} - \mathbf{i}\mathbf{b} = \mathbf{3} + 4\mathbf{i}$

Graphing of Complex Numbers

The complex number consists of a *real part* and an *imaginary part*, which can be considered as an ordered pair (Re(z), Im(z)) and can be represented as coordinates points in the complex plane. The complex number z = a + ib is represented with the *real part-a*, with reference to the *x-axis*, and the *imaginary part-b*, with reference to the *y-axis*.

Polar Coordinates of a Complex Numbers

Let z = x + y i = (x, y) be a complex number. Then $|z| = \sqrt{x^2 + y^2}$ and the argument of z, θ denoted by $\arg(z)$ is the angle between the *positive direction for the real axis* with *the vector* \overrightarrow{Oz} , where O is the *origin* and z = (x, y), and the direction of θ with anti-clockwise and it's positive. Thus a complex numbers has an infinite number of arguments, any two of which differ by an integral multiple of 2π . The *principal argument* of z is the unique argument that lies on the interval $(-\pi, \pi)$. If z = (x, y), then

~

College of Education

1- $\mathbf{x} = \mathbf{r} \cos \theta$, $\mathbf{y} = \mathbf{r} \sin \theta$, $\theta = \pi - \alpha$ $\alpha = \theta$ 2- $\mathbf{r} = \sqrt{\mathbf{x}^2 + \mathbf{y}^2} = |\mathbf{z}|$, 3- $\alpha = \tan^{-1} \left| \frac{\mathbf{y}}{\mathbf{x}} \right|$. $\theta = \alpha - \pi$ $\theta = -\alpha$

Hence $\mathbf{z} = (\mathbf{x}, \mathbf{y}) = (\mathbf{r}\cos\theta, \mathbf{r}\sin\theta) = \mathbf{r}(\cos\theta, \sin\theta) = \mathbf{r}(\cos\theta + \mathbf{i}\sin\theta).$

Example: Write the number **1**– *i* as in *polar forms*.

Solution:

$$z = 1 - i, \ r = \sqrt{1^2 + (-1)^2} = \sqrt{2}$$

And $\alpha = tan^{-1}\left(\frac{-1}{1}\right) = tan^{-1}(-1),$
 $z = 1 - i = \sqrt{2}\left(\cos\frac{-\pi}{4} + i\sin\frac{-\pi}{4}\right).$

Examples. Find the *polar forms* of these numbers:

1) $\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)$ 2) $(\sqrt{3} - i)$ 3) 4 + 3i 4) -6i

Theorem: If z_1 and z_2 be two complex numbers, where

 $\mathbf{z_1} = r_1(\cos\theta_1, \sin\theta_1)$ and $\mathbf{z_2} = r_2(\cos\theta_2, \sin\theta_2)$, then

1-
$$|\mathbf{z}_1 \mathbf{z}_2| = r_1 r_2 = |z_1| |z_2|$$

2- $arg(z_1z_2) = argz_1 + argz_2$

3- $\left|\frac{\mathbf{z_1}}{\mathbf{z_2}}\right| = \frac{r_1}{r_2}$ 4- $\arg\left(\frac{\mathbf{z_1}}{\mathbf{z_2}}\right) = \arg \mathbf{z_1} - \arg \mathbf{z_2}$

Example:

If we have $z_1 = 12(cos85, sin85)$ and $z_2 = 3(cos50, sin50)$, then find

1- $|z_1z_2|$ 2- $arg(z_1z_2)$ 3- $\left|\frac{z_1}{z_2}\right|$ 4- $arg\left(\frac{z_1}{z_2}\right)$.

Solution:

$$z_1 z_2 = 12 \times 3(\cos 135, \sin 135)$$
,
 $|z_1 z_2| = 36$ and $arg(z_1 z_2) = 135$
 $\frac{z_1}{z_2} = 4(\cos 35, \sin 35)$,
 $\left|\frac{z_1}{z_2}\right| = 4$
And $arg\left(\frac{z_1}{z_2}\right) = 35$.

Theorem: (*Demoiver's theorem*) If **n** is *a positive integer*, then $z^{n} = (r(\cos\theta + i\sin\theta))^{n} = (r(\cos\theta, \sin\theta))^{n} = r^{n} (\cos n\theta, \sin n\theta).$

Example: By using **Demoiver's theorem** Find $z = (-\sqrt{3} + i)^5$.

Solution:

$$r = \sqrt{(-\sqrt{3})^2 + 1^2} = \sqrt{4} = 2,$$

$$\theta = tan^{-1} \frac{1}{\sqrt{3}} = 150^\circ$$

$$z = 2(\cos 150^\circ + isin 150^\circ)$$

$$(-\sqrt{3} + i)^5 = 2^5(\cos 150^\circ + isin 150^\circ)^5$$

$$= 32(\cos 5(150^\circ) + isin 5(150^\circ))$$

$$= 32(\cos 750 + isin 750)$$

$$= 32(\frac{\sqrt{3}}{2} + i\frac{1}{2}) = 16\sqrt{3} + i16.$$

H.W. Find the value of the following

1)
$$((14(\cos 50, i\sin 50))^3)$$

2)
$$z = (3 - \sqrt{3}i)^4$$

3) $(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i)^{40}$

4) Let *n* be a *positive integer* then *prove that*

$$(\sqrt{3}+i)^n + (\sqrt{3}-i)^n = 2^{n+1} \cos\frac{n\pi}{6}$$