Ministry Of Higher Education and Scientific Research Salahaddin University-Erbil
College of Education
Department of Mathematics


# Finite Mathematics 

## Lecturer's name

Bushra N. Abdulgaphur

## Academic Year /2023-2024

Second Semester
First stage

## Chapter one

## The Complex numbers

A complex number is the sum of a real number and an imaginary number. A complex number is of the form $\boldsymbol{a}+\boldsymbol{i} \boldsymbol{b}$ or $(\boldsymbol{a}, \boldsymbol{b})$ and is usually represented by $z$. Here both $\boldsymbol{a}$ and $\boldsymbol{b}$ are real numbers. The value ' $a^{\prime}$ is called the real part which is denoted by $\operatorname{Re}(\mathbf{z})$, and ${ }^{\prime} \boldsymbol{b}^{\prime}$ is called the imaginary part $\operatorname{Im}(\mathbf{z})$. Also, $\boldsymbol{i b}$ is called an imaginary number.
$C=\{a+b i: a, b$ are real numbers $\}=\{(\boldsymbol{a}, \boldsymbol{b}): \boldsymbol{a}, \boldsymbol{b}$ are real numbers $\}$

Representation of a Complex Number
Complex Numbers


Some of the examples of complex numbers are
$2+3 i, \quad-6-5 i, \quad 12+i 32 \quad \sqrt{7}+3 i, \quad \frac{15}{2}-5 i$ etc.

## Power of $\boldsymbol{i}$

- $i=\sqrt{-1}$
- $i^{2}=-1$
- $i^{3}=i \cdot i^{2}=i(-1)=-i$
- $i^{4}=\left(i^{2}\right)\left(i^{2}\right)=(-1)(-1)=1$
- $i^{4 n}=1$
- $i^{4 n+1}=i$
- $i^{4 n+2}=-1$
- $i^{4 n+3}=-i$


## Complex Number Formulas

## Addition

Two Complex numbers are added by adding the real and imaginary parts of the summands. That is to say:

$$
\begin{aligned}
(a+i b)+(c+i d) & =(a+c)+(b+d) i \\
(2+3 i)+(5-4 i) & =(2+5)+(3-4) i=7+(-1) i=7-i
\end{aligned}
$$

## Subtraction

Two Complex numbers are subtraction by subtracting the real and imaginary parts.
This is defined by

$$
\begin{aligned}
& (a+i b)-(c+i d)=(a-c)+(b-d) i \\
& \left(\frac{2}{3}+i\right)-\left(\frac{5}{3}+4 i\right)=\left(\frac{2}{3}-\frac{5}{3}\right)+(1-4) i=\frac{-3}{3}-(3) i=-1-3 i
\end{aligned}
$$

## Multiplication

The multiplication of two complex numbers is defined by the following formula:

$$
\begin{aligned}
(a+i b)(c+i d) & =(a c-b d)+(b c+a d) i \\
(2+4 i)(1+3 i) & =(2 * 1+2 \times 3 i+4 i * 1+4 i \times 3 i \\
& =2+6 i+4 i+12 i^{2} \\
& =2+10 i-12 \quad \text { because } i^{2}=-1 \\
& =-10+10 i
\end{aligned}
$$

## Division

The division of two complex numbers is defined in terms of complex multiplication, which is described above, and real division. Where at least one of $\boldsymbol{c}$ and $\boldsymbol{d}$ is nonzero:

$$
\begin{aligned}
& \frac{a+b i}{c+d i}=\left(\frac{a c+b d}{c^{2}+d^{2}}\right)+\left(\frac{c b-a d}{c^{2}+d^{2}}\right) i \\
& \frac{3-2 i}{1+3 i}=\frac{3-2 i}{1+3 i} \times \frac{1-3 i}{1-3 i}=\frac{3-9 i-2 i+6 i^{2}}{1+3 i-3 i-9 i^{2}}=\frac{-3-11 i}{10}
\end{aligned}
$$

Example: (H.W) Simplify the following

1- $4(3+2 i)-5(2-6 i)+(5+8 i)$.
2-3(1+2i)+5(3+2i)-(6+2i).
3- $(5-2 i)(3+5 i)$.
4- $(2+3 i)(2-5 i)(3+2 i)$.
5-3 $(3,-1)-(-6,3)+2(-2,-3)$.

Example: (H.W) Find the value of $\boldsymbol{x}$ and $\boldsymbol{y}$ of the equation

1- $(3,4) 2-2(x,-y)=(x, y)$.
2- $\left(\frac{2+i}{2-i}\right)^{2}+\frac{1}{2 x+i y}=2+i$.
3- $(1+4 i)^{2}-2(x-y i)=x+y i$.
4- If $\frac{x-i y}{x+i y}=a+i b$, then prove that $a^{2}+b^{2}=1$.
5- Prove that $\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)^{3}=1$.

## Conjugate and absolute value of a Complex Numbers

Let $z=a+i b$ be a complex number.
The absolute value of $Z$ is represented by $|Z|$.
Mathematically, $|Z|=\sqrt{a^{2}+b^{2}} \geq 0$.
The conjugate of " $z$ " is denoted by $\bar{Z}$
Mathematically, $\overline{\boldsymbol{Z}}=\boldsymbol{a}-\boldsymbol{i} \boldsymbol{b}$

Example: Find the absolute value and the conjugate of $z=3-4 i$.
Solution:

$$
|z|=\sqrt{a^{2}+b^{2}}=\sqrt{3^{2}+(-4)^{2}}=\sqrt{9+16}=\sqrt{25}=5
$$

And $\bar{Z}=a-i b=3+4 i$

## Graphing of Complex Numbers

The complex number consists of a real part and an imaginary part, which can be considered as an ordered pair $(\boldsymbol{\operatorname { R e }}(\mathbf{z}), \operatorname{Im}(\mathbf{z}))$ and can be represented as coordinates points in the complex plane. The complex number $\boldsymbol{z}=\boldsymbol{a}+\boldsymbol{i} \boldsymbol{b}$ is represented with the real part-a, with reference to the $x$-axis, and the imaginary part- $b$, with reference to the $y$-axis.

## Polar Coordinates of a Complex Numbers

Let $z=x+y \boldsymbol{i}=(x, y)$ be a complex number. Then $|z|=\sqrt{x^{2}+y^{2}}$ and the argument of $z, \boldsymbol{\theta}$ denoted by $\arg (z)$ is the angle between the positive direction for the real axis with the vector $\overrightarrow{\boldsymbol{O} z}$, where $\boldsymbol{O}$ is the origin and $z=(x, y)$, and the direction of $\boldsymbol{\theta}$ with anti-clockwise and it's positive. Thus a complex numbers has an infinite number of arguments, any two of which differ by an integral multiple of $2 \pi$. The principal argument of $z$ is the unique argument that lies on the interyal $(-\pi, \pi)$. If $z=(x, y)$, then

$$
\begin{array}{lll}
\text { 1- } x=r \cos \theta, y=r \sin \theta, & \theta=\pi-\alpha & \alpha=\theta \\
\text { 2- } r=\sqrt{x^{2}+y^{2}}=|z|, & \theta=\alpha-\pi & \theta=-\alpha \\
\text { 3- } \alpha=\tan ^{-1}\left|\frac{y}{x}\right| . & &
\end{array}
$$

$$
\text { Hencez }=(x, y)=(r \cos \theta, r \sin \theta)=r(\cos \theta, \sin \theta)=r(\cos \theta+i \sin \theta)
$$

## Representation of Complex Number



Example: Write the number 1- $\boldsymbol{i}$ as in polar forms.

## Solution:

$$
z=1-i, r=\sqrt{1^{2}+(-1)^{2}}=\sqrt{2}
$$

And $\alpha=\tan ^{-1}\left(\frac{-1}{1}\right)=\tan ^{-1}(-1)$,

$$
z=1-i=\sqrt{2}\left(\cos \frac{-\pi}{4}+i \sin \frac{-\pi}{4}\right) .
$$

Examples. Find the polar forms of these numbers:

1) $\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)$
2) $(\sqrt{3}-i)$
3) $4+3 i$
4) $-6 i$

Theorem: If $z_{1}$ and $z_{2}$ be two complex numbers, where $z_{1}=r_{1}\left(\cos \theta_{1}, \sin \theta_{1}\right)$ and $z_{2}=r_{2}\left(\cos \theta_{2}, \sin \theta_{2}\right)$, then
$1-\left|z_{1} z_{2}\right|=\boldsymbol{r}_{1} \boldsymbol{r}_{2}=\left|z_{1}\right|\left|z_{2}\right|$
2- $\boldsymbol{\operatorname { a r g }}\left(z_{1} z_{2}\right)=\boldsymbol{\operatorname { a r g }} z_{1}+\boldsymbol{\operatorname { a r g }} z_{2}$

3- $\left|\frac{z_{1}}{z_{2}}\right|=\frac{r_{1}}{r_{2}}$
4- $\arg \left(\frac{z_{1}}{z_{2}}\right)=\arg z_{1}-\arg z_{2}$

## Example:

If we have $z_{1}=12(\cos 85, \sin 85)$ and $z_{2}=3(\cos 50, \sin 50)$, then find
$1-\left|z_{1} z_{2}\right|$
2- $\boldsymbol{\operatorname { a r g }}\left(z_{1} z_{2}\right)$
$3-\left|\frac{z_{1}}{z_{2}}\right|$
4- $\boldsymbol{a r g}\left(\frac{z_{1}}{z_{2}}\right)$.

## Solution:

$$
\begin{aligned}
& z_{1} z_{2}=12 \times 3(\cos 135, \sin 135), \\
& \left|z_{1} z_{2}\right|=36 \text { and } \arg \left(z_{1} z_{2}\right)=135 \\
& \frac{z_{1}}{z_{2}}=4(\cos 35, \sin 35), \\
& \left|\frac{z_{1}}{z_{2}}\right|=4
\end{aligned}
$$

And $\arg \left(\frac{z_{1}}{z_{2}}\right)=35$.

Theorem: (Demoiver's theorem) If $\boldsymbol{n}$ is a positive integer, then $z^{n}=(r(\cos \theta+\boldsymbol{i} \sin \theta))^{n}=(r(\cos \theta, \sin \theta))^{n}=r^{n}(\cos \boldsymbol{n} \theta, \sin \boldsymbol{n} \theta)$.

Example: By using Demoiver's theorem Find $z=(-\sqrt{3}+i)^{5}$.

## Solution:

$$
\begin{aligned}
r & =\sqrt{(-\sqrt{3})^{2}+1^{2}}=\sqrt{4}=2 \\
\theta & =\tan ^{-1} \frac{1}{\sqrt{3}}=150^{\circ} \\
z & =2\left(\cos 150^{\circ}+i \sin 150^{\circ}\right) \\
(-\sqrt{3}+i)^{5} & =2^{5}\left(\cos 150^{\circ}+i \sin 150^{\circ}\right)^{5} \\
& =32\left(\cos 5\left(150^{\circ}\right)+i \sin 5\left(150^{\circ}\right)\right) \\
& =32(\cos 750+i \sin 750) \\
& =32\left(\frac{\sqrt{3}}{2}+i \frac{1}{2}\right)=16 \sqrt{3}+i 16
\end{aligned}
$$

H.W. Find the value of the following

1) $\left((14(\cos 50, i \sin 50))^{3}\right.$
2) $z=(3-\sqrt{3} i)^{4}$
3) $\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} i\right)^{40}$
4) Let $n$ be a positive integer then prove that

$$
(\sqrt{3}+i)^{n}+(\sqrt{3}-i)^{n}=2^{n+1} \cos \frac{n \pi}{6}
$$

