Chapter Two

Matrices

Definition: A matrix $\mathrm{A}=\left[\boldsymbol{a}_{i j}\right]$ is a rectangle array of numbers or variables denoted by

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

OR

$$
\boldsymbol{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right) \quad i=1,2, \cdots, m \text { and } j=1,2, \cdots, n
$$

In which m is the number of rows and \boldsymbol{n} is the number of columns. A matrix \boldsymbol{A} with m rows and \boldsymbol{n} columns is denoted by $A_{m \times n}$ (we say that \boldsymbol{A} is \boldsymbol{m} by \boldsymbol{n} matrix) and the elements of the matrix \boldsymbol{A} is denoted by $\boldsymbol{a}_{i j}$.
That is $\boldsymbol{i}^{\boldsymbol{t} h}$ row of \boldsymbol{A} is $\left[\begin{array}{llll}\boldsymbol{a}_{i 1} & \boldsymbol{a}_{i 2} & \ldots & \boldsymbol{a}_{i n}\end{array}\right], \quad 1 \leq i \leq m$ and $j^{\text {th }}$ Column of \boldsymbol{A} is $\left[\begin{array}{c}\boldsymbol{a}_{1 j} \\ \boldsymbol{a}_{2 j} \\ \vdots \\ \boldsymbol{a}_{m j}\end{array}\right], \quad 1 \leq \boldsymbol{j} \leq \boldsymbol{n}$.
Example 2.1:

$$
\boldsymbol{A}=\left(\begin{array}{rr}
1 & 0 \\
-3 & 4 \\
-10 & 3
\end{array}\right) \quad \boldsymbol{B}=\left(\begin{array}{rrr}
12 & 3 & 7 \\
6 & -2 & -1 \\
-11 & 3 & -2
\end{array}\right) \quad \boldsymbol{C}=\left(\begin{array}{lll}
\frac{3}{4} & \sqrt{4} & 6
\end{array}\right) \quad \boldsymbol{D}=\left(\begin{array}{c}
\sqrt{2} \\
1 \\
0 \\
-1
\end{array}\right)
$$

Matrix \boldsymbol{A} with 3 rows and 2 columns, matrix \boldsymbol{B} with 3 rows and $\mathbf{3}$ columns, matrix \boldsymbol{C} with 1 rows and 3 columns and matrix \boldsymbol{D} with 4 rows and 1 column. $\boldsymbol{A}_{3 \times 2}, \boldsymbol{B}_{3 \times 3}, \boldsymbol{C}_{3 \times 1}, \mathbf{D}_{4 \times 1}$. The elements of matrix \boldsymbol{A} are $a_{11}=1, a_{12}=0, a_{21}=-3, a_{22}=4, a_{31}=-10$ and $a_{32}=3$.

Example 2.2:
Construct a matrix of degree 2×3 such that its elements are of the form $\quad a_{i j}=$ $(i+2 j) \quad \forall i, j$.

Example 2.3: H.W,

Find the matrix $\quad \boldsymbol{A}=\left(\boldsymbol{a}_{i j}\right)_{3 \times 2}$ such that $\boldsymbol{a}_{i j}=2 \mathbf{j}+\boldsymbol{i}^{2}$.

Operations on Matrices

-Matrix Addition

Let $\boldsymbol{A}=\left(\boldsymbol{a}_{i j}\right)$ and $\boldsymbol{B}=\left(\boldsymbol{b}_{i j}\right)$ be any two $\boldsymbol{m} \times \boldsymbol{n}$ matrices, then the sum of two matrix \boldsymbol{A} and \boldsymbol{B} defined by $\boldsymbol{A}+\boldsymbol{B}=\left(\boldsymbol{a}_{i j}\right)+\left(\boldsymbol{b}_{i j}\right)$ is also $\boldsymbol{m} \times \boldsymbol{n}$ matrix.

$$
\begin{aligned}
\boldsymbol{A}+\boldsymbol{B} & =\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]+\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & & \vdots \\
b_{m 1} & b_{m 2} & \cdots & b_{m n}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
a_{11}+b_{11} & a_{12}+b_{12} & \cdots & a_{1 n}+b_{1 n} \\
a_{21}+b_{21} & a_{22}+b_{22} & \cdots & a_{2 n}+b_{2 n} \\
\vdots & \vdots & \vdots \\
a_{m 1}+b_{21} & \vdots & a_{m 2}+b_{21} & \cdots \\
a_{m n}+b_{21}
\end{array}\right]
\end{aligned}
$$

Example 2.4:

1) Let $\quad A=\left(\begin{array}{ccc}3 & -1 & 0 \\ 5 & 3 & 2\end{array}\right)$ and $B=\left(\begin{array}{ccc}2 & 3 & -1 \\ 1 & 1 & 0\end{array}\right)$

Then

$$
A+B=\left(\begin{array}{ccc}
3 & -1 & 0 \\
5 & 3 & 2
\end{array}\right)+\left(\begin{array}{ccc}
2 & 3 & -1 \\
1 & 1 & 0
\end{array}\right)=
$$

$$
\left(\begin{array}{ccc}
3+2 & -1+3 & 0+(-1) \\
5+1 & 3+1 & 2+0
\end{array}\right)
$$

$$
=\left(\begin{array}{ccc}
5 & 2 & -1 \\
6 & 4 & 2
\end{array}\right)
$$

2) $\mathrm{H} . \mathrm{W}$.

Find $\boldsymbol{A}+\boldsymbol{B}, \boldsymbol{A}+\boldsymbol{C}, \boldsymbol{B}+\boldsymbol{C}$ and $\boldsymbol{A}+\boldsymbol{B}+\boldsymbol{C}$ where
$A=\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \\ -1 & 2 & 9 & 0\end{array}\right) \quad B=\left(\begin{array}{rrrr}-1 & 6 & 3 & 7 \\ 2 & 1 & 4 & -2 \\ -1 & 3 & 8 & 1\end{array}\right) \quad$ and $C=\left(\begin{array}{rrrr}1 & 0 & 9 & 4 \\ 4 & 2 & 2 & 11 \\ 5 & 2 & 9 & 0\end{array}\right)$

-Matrix Subtraction

Let $\boldsymbol{A}=\left(\boldsymbol{a}_{i j}\right)$ and $\boldsymbol{B}=\left(\boldsymbol{a}_{i j}\right)$ be any two $\boldsymbol{m} \times \boldsymbol{n}$ matrices, then the subtraction of two matrix \boldsymbol{A} and \boldsymbol{B} defined by $\boldsymbol{A}-\boldsymbol{B}=\left(\boldsymbol{a}_{i j}\right)-\left(\boldsymbol{b}_{i j}\right)$ is also $\boldsymbol{m} \times \boldsymbol{n}$ matrix.

$$
\begin{aligned}
\boldsymbol{A}-\boldsymbol{B} & =\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]-\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & & \vdots \\
b_{m 1} & b_{m 2} & \cdots & b_{m n}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
a_{11}-b_{11} & a_{12}-b_{12} & \cdots & a_{1 n}-b_{1 n} \\
a_{21}-b_{21} & a_{22}-b_{22} & \cdots & a_{2 n}-b_{2 n} \\
\vdots & \vdots \\
a_{m 1}-b_{21} & a_{m 2}-b_{21} & \cdots & \vdots \\
a_{m n}-b_{21}
\end{array}\right], i=1,2, \cdots, m \text { and } j=1,2, \cdots, n
\end{aligned}
$$

Example 2.5:

Let $\boldsymbol{A}=\left(\begin{array}{cc}2 & -1 \\ 0 & 5\end{array}\right)$ and $\boldsymbol{B}=\left(\begin{array}{cc}2 & 0 \\ 3 & -2\end{array}\right)$ then find $\boldsymbol{A}-\boldsymbol{B}$

$$
\boldsymbol{A}-\boldsymbol{B}=\left(\begin{array}{cc}
2 & -1 \\
0 & 5
\end{array}\right)-\left(\begin{array}{cc}
2 & 0 \\
3 & -2
\end{array}\right)=\left(\begin{array}{cc}
2-2 & -1-0 \\
0-3 & 5-(-2)
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
-3 & 7
\end{array}\right)
$$

-Scalar multiplication:

Let $\boldsymbol{A}=\left(\boldsymbol{a}_{i j}\right)$ be any $\boldsymbol{m} \times \boldsymbol{n}$ matrix and \boldsymbol{c} be any real number, then the scalar multiplication c by A is anm $\times n$ matrix $\mathrm{D}=\mathrm{c} \mathrm{A}=\mathrm{c}\left(a_{i j}\right)$

$$
\boldsymbol{D}=\boldsymbol{c} \cdot \boldsymbol{A}=\boldsymbol{c} \cdot\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]=\left[\begin{array}{cccc}
c a_{11} & c a_{12} & \cdots & c a_{1 n} \\
c a_{21} & c a_{22} & \cdots & c a_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
c a_{m 1} & c a_{m 2} & \cdots & c a_{m n}
\end{array}\right]
$$

Example 2.6:

$$
2 \cdot\left[\begin{array}{ccc}
1 & 8 & -3 \\
4 & -2 & 5
\end{array}\right]=\left[\begin{array}{ccc}
2.1 & 2.8 & 2(-3) \\
2.4 & 2 .(-2) & 2.5
\end{array}\right]=\left[\begin{array}{ccc}
2 & 16 & -6 \\
8 & -4 & 10
\end{array}\right]
$$

Example 2.7:

Find $\sqrt{3}\left(\begin{array}{cc}6 & 12 \\ 3 & 1 \\ -15 & 0\end{array}\right)$.

-Matrix Equality

Let $\boldsymbol{A}=\left(\boldsymbol{a}_{i j}\right)$ and $\boldsymbol{B}=\left(\boldsymbol{b}_{i j}\right)$ be any two $m \times \boldsymbol{n}$ matrices, then the equal of two matrix \boldsymbol{A} and \boldsymbol{B} defined by

$$
\boldsymbol{A}=\boldsymbol{B} \Rightarrow\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \cdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]=\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \vdots \\
b_{m 1} & b_{m 2} & \cdots & b_{m n}
\end{array}\right],
$$

$\boldsymbol{a}_{i j}=\boldsymbol{b}_{i j}$ for all $\boldsymbol{i}=1,2, \cdots, m$ and $\boldsymbol{j}=1,2, \cdots, \boldsymbol{n}$

Example 2.8:

Given that the following matrices are equal, find the values of x and y.

$$
\boldsymbol{A}=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \text { and } \boldsymbol{B}=\left(\begin{array}{ll}
x & 2 \\
3 & y
\end{array}\right)
$$

Solution: Since $\boldsymbol{A}=\boldsymbol{B}$
Then

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\left(\begin{array}{ll}
x & 2 \\
3 & y
\end{array}\right), \quad x=\mathbf{1} \text { and } y=4
$$

Here are two matrices which are not equal even though they have the same elements.

$$
A=\left(\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right)_{3 \times 2} \neq\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)_{2 \times 3}
$$

Example 2.9:

Given that the following matrices are equal, find the values of x, y, and z.
$\boldsymbol{A}=\left(\begin{array}{cc}4 & 0 \\ 6 & -2 \\ 3 & 1\end{array}\right)$ and $\boldsymbol{B}=\left(\begin{array}{cc}x & 0 \\ 6 & y+4 \\ \frac{z}{3} & 1\end{array}\right)$

-Multiplication of a Matrix by a Scalar

Let $\boldsymbol{A}=\left(\boldsymbol{a}_{i j}\right)$ be an $m \times \boldsymbol{n}$ matrix and $\boldsymbol{B}=\left(\boldsymbol{b}_{\boldsymbol{i j}}\right)$ be an $\boldsymbol{n} \times \boldsymbol{p}$ matrix, then the product of \boldsymbol{A} and \boldsymbol{B} defined by $\boldsymbol{A} \times \boldsymbol{B}(\boldsymbol{A} \cdot \boldsymbol{B})$ is an $m \times p$ matrix \boldsymbol{C}.

$$
\begin{aligned}
& \boldsymbol{C}=\left(\boldsymbol{a}_{i j}\right)_{m \times n} \cdot\left(\boldsymbol{b}_{i j}\right)_{n \times p}=\left(\sum_{t=1}^{n} a_{i t} \cdot b_{t j}\right)_{m \times p}, \\
& \\
& \quad \text { for all } i=1,2, \cdots, m \text { and } \boldsymbol{j}=1,2, \cdots, \boldsymbol{p} .
\end{aligned}
$$

Example 2.10:

$$
\begin{aligned}
\mathbf{A} & =\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)_{2 \times 2} \quad \text { and } \mathbf{B}=\left(\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{23} & b_{23}
\end{array}\right)_{2 \times 3} \\
\boldsymbol{A} \cdot \boldsymbol{B} & =\left(\begin{array}{lll}
a_{11} b_{11}+a_{12} b_{21} & a_{11} b_{12}+a_{12} b_{23} & a_{11} b_{13}+a_{12} b_{23} \\
a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{11}+a_{22} b_{23} & a_{21} b_{13}+a_{22} b_{23}
\end{array}\right)_{2 \times 3}
\end{aligned}
$$

Example 2.11:

$$
A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 0 & 4
\end{array}\right), \quad B=\left(\begin{array}{cc}
-1 & 0 \\
4 & 2 \\
1 & 3
\end{array}\right)
$$

Then $\quad A \cdot B=\left(\begin{array}{ccc}\mathbf{1} & 2 & 3 \\ -1 & \mathbf{0} & 4\end{array}\right) \cdot\left(\begin{array}{cc}-1 & \mathbf{0} \\ \mathbf{4} & 2 \\ 1 & 3\end{array}\right) \quad=$

$$
\left(\begin{array}{cc}
1 *-1+2 * 4+3 * 1 & 1 * 0+2 * 2+3 * 3 \\
-1 *-1+0 * 4+4 * 1 & -1 * 0+0 * 2+4 * 3
\end{array}\right)=\left(\begin{array}{cc}
10 & 13 \\
5 & 12
\end{array}\right)
$$

Remark:

In the matrix multiplication the number of columns of the first matrix is equal to the number of rows in the second matrix.

Example 2.12:

1) Find $\boldsymbol{A} \cdot \boldsymbol{B}$ where $\boldsymbol{A}=\left(\begin{array}{cc}1 & 2 \\ 6 & -3 \\ 0 & 1\end{array}\right)_{3 \times 2}$ and $\boldsymbol{B}=\binom{-1}{-1}_{2 \times 1}$ and $\boldsymbol{B} \cdot \boldsymbol{A}$ if it is possible
2) Determine the matrices \boldsymbol{A} and \boldsymbol{B}

Where

$$
\boldsymbol{A}+\mathbf{2} \boldsymbol{B}=\left(\begin{array}{ccc}
1 & 2 & 0 \\
6 & -3 & 3 \\
-5 & 3 & 1
\end{array}\right) \text { and } 2 A-B=\left(\begin{array}{ccc}
2 & -1 & 5 \\
2 & -1 & 6 \\
0 & 1 & 2
\end{array}\right)
$$

-Transpose

If $\boldsymbol{A}=\left(\boldsymbol{a}_{i j}\right)$ be any $\boldsymbol{m} \times \boldsymbol{n}$ matrix, then the $\boldsymbol{n} \times \boldsymbol{m}$ matrix $\boldsymbol{B}=\left(\boldsymbol{b}_{i j}\right)$,
where $\boldsymbol{b}_{i j}=\boldsymbol{a}_{i j}$ is called the transpose of \boldsymbol{A} and is denoted by $\boldsymbol{A}^{\boldsymbol{T}}$.

For example $\boldsymbol{A}=\left(\begin{array}{lll}2 & 3 & 5 \\ 6 & 4 & 7\end{array}\right)$, then the transpose of \boldsymbol{A} is $\left(\begin{array}{ll}2 & 6 \\ 3 & 4 \\ 5 & 7\end{array}\right)=\boldsymbol{A}^{T}$.

Properties of transpose

1) $\left(A^{T}\right)^{T}=A$
2) $(A+B)^{T}=A^{T}+B^{T}$
3) $(\alpha \cdot A)^{T}=\alpha \cdot A^{T}$
4) $(A \cdot B)^{T}=B^{T} \cdot A^{T}$

Types of Matrices

1) Row and Column Matrix

Matrices with only one row and any number of columns are known as row matrices and matrices with one column and any number of rows are called column matrices.

Let's look at two examples below:

Row Matrix	Column Matrix
$\boldsymbol{A}=\left[\begin{array}{lll}\mathbf{1} & \mathbf{2} & \mathbf{3}\end{array}\right]$	$\boldsymbol{B}=\left[\begin{array}{c}3 \\ 0 \\ -2 \\ 1\end{array}\right]$
There is only one row, so \boldsymbol{A} is a row matrix.	There is only one column, so B is a column matrix.

2) Rectangular and Square Matrix

Any matrix that does not have an equal number of rows and columns is called a rectangular matrix and a rectangular matrix can be denoted by $[\boldsymbol{B}]_{m \times n}$. Any matrix that has an equal number of rows and columns is called a square matrix and a square matrix can be denoted by $[\boldsymbol{B}]_{n \times n}$.

Let's look at the examples below:

Rectangular Matrix	Square Matrix
$\boldsymbol{A}=\left[\begin{array}{ccc}\mathbf{1} & \mathbf{3} & \mathbf{2} \\ \mathbf{5} & \mathbf{2} & \mathbf{1}\end{array}\right]$	
$\boldsymbol{B}=\left(\begin{array}{cc}\mathbf{1 2} & \mathbf{5} \\ \mathbf{2} & -\mathbf{3} \\ \mathbf{0} & \mathbf{1 1}\end{array}\right)_{\mathbf{3 \times 2}}$	$\boldsymbol{C}=\left[\begin{array}{ccc}2 & 1 & 4 \\ -1 & 6 & 7 \\ 3 & 2 & 1\end{array}\right]$
$\boldsymbol{D}=\left(\begin{array}{ccc}3 & -1 & 0 \\ 7 & -4 & 6 \\ 0 & 1 & 2\end{array}\right)_{3 \times 3}$	
The matrix \boldsymbol{A} have two rows and three columns in this matrix, and \boldsymbol{B} have three rows and two columns, so \boldsymbol{A} and \boldsymbol{B} are rectangular matrices.	The matrix C have three rows and three columns and so $D . C$ and are square matrices.

3) Identity matrix:

Let $\boldsymbol{A}=\left(\boldsymbol{a}_{i j}\right)$ be any $\boldsymbol{m} \times \boldsymbol{m}$ matrix, then \boldsymbol{A} is said to be identity matrix if the diagonal elements are equal to $\mathbf{1}$ and other all elements are zero. Thus, a square matrix
$\mathbf{A}=\left[\boldsymbol{a}_{i j}\right]$ is an identity matrix if $\boldsymbol{a}_{i j}=\left\{\begin{array}{ll}0 & \text { if } \boldsymbol{i} \neq \boldsymbol{j} \\ 1 & \text { if } i=\boldsymbol{j}\end{array}\right\}$ It is denoted by $\boldsymbol{I}_{\boldsymbol{m} \times \boldsymbol{m}}$.
$\boldsymbol{I}_{1 \times 1}=(1), I_{2 \times 2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), I_{3 \times 3}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.

5) Zero matrix:

Let $A=\left(\boldsymbol{a}_{i j}\right)$ be any $\boldsymbol{m} \times \boldsymbol{n}$ matrix, then A is said to be zero matrix if all elements of \boldsymbol{A} are zero (if $\boldsymbol{a}_{i j}=\mathbf{0}$ for all $\boldsymbol{i}=1,2, \cdots, \boldsymbol{m}$ and $\boldsymbol{j}=1,2, \cdots, \boldsymbol{n}$).
For example $\quad \boldsymbol{A}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)_{2 \times 3}$ is a zero matrix.

6) Diagonal matrix:

A square matrix \boldsymbol{A} is said to be diagonal matrix if all elements expect the diagonal elements are zero (if $\boldsymbol{a}_{i j}=\mathbf{0}$ for $\boldsymbol{i} \neq \boldsymbol{j}$).

For example

$$
A=\left(\begin{array}{ccc}
3 & 0 & 0 \\
0 & -4 & 0 \\
0 & 0 & 2
\end{array}\right)_{3 \times 3} \text { is a diagonal matrix. }
$$

7) Scalar matrix:

A diagonal matrix \boldsymbol{A} is said to be scalar matrix if the diagonal elements are all equal. Thus, a square matrix $\boldsymbol{A}=\left[\boldsymbol{a}_{i j}\right]$ a scalar matrix if $\boldsymbol{a}_{i j}=\left\{\begin{array}{ll}0 & \text { if } \boldsymbol{i} \neq \boldsymbol{j} \\ \boldsymbol{k} & \text { if } \boldsymbol{i}=\boldsymbol{j}\end{array}\right\}$ where \boldsymbol{k} is a constant. For example

$$
\boldsymbol{A}=\left(\begin{array}{lll}
\mathbf{5} & 0 & 0 \\
0 & \mathbf{5} & 0 \\
0 & 0 & \mathbf{5}
\end{array}\right)_{3 \times 3} \text { is a scalar matrix. }
$$

Conclusions:

- All identity matrices are scalar matrices
- All scalar matrices are diagonal matrices
- All diagonal matrices are square matrices

8) Triangular Matrix:

A square matrix is said to be a triangular matrix if the elements above or below the principal diagonal are zero. There are two types:

- Upper Triangular Matrix

A square matrix \boldsymbol{A} is called an upper triangular matrix, if $\boldsymbol{a}_{i j}=\mathbf{0}$ when $i>j$

For example $A=\left(\begin{array}{ccc}3 & -1 & 4 \\ 0 & 2 & 7 \\ 0 & 0 & -9\end{array}\right)_{3 \times 3}$ is an upper triangular matrix

- Lower Triangular Matrix

A square matrix \boldsymbol{A} is called a lower triangular matrix, If $\boldsymbol{a}_{i j}=\mathbf{0}$ when $\boldsymbol{i}<\boldsymbol{j}$.
. For example $\boldsymbol{A}=\left(\begin{array}{ccc}3 & 0 & 0 \\ -1 & 2 & 0 \\ 5 & 8 & -9\end{array}\right)_{3 \times 3} \quad$ is a lower triangular matrix.

9) Symmetric matrix:

An $\boldsymbol{m} \times \boldsymbol{m}$ matrix $\boldsymbol{A}=\left(\boldsymbol{a}_{i j}\right)$ is said to be symmetric matrix if $\quad \boldsymbol{A}=$ \boldsymbol{A}^{T} (i.e. $\quad \boldsymbol{a}_{i j}=a_{j i}$ for all $\left.\boldsymbol{i}, \boldsymbol{j}\right)$.
For example $\quad \boldsymbol{A}=\left(\begin{array}{ccc}4 & -3 & 1 \\ -3 & 2 & 8 \\ 1 & 8 & -9\end{array}\right)_{3 \times 3} \quad$ is a symmetric matrix.

$$
\left(\begin{array}{ccc}
5 & 4 & 3 \\
4 & 0 & 7 \\
3 & 7 & -1
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 4 \\
2 & 3 & 0 \\
4 & 0 & 5
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 0 & 3 & 4 \\
-1 & 3 & 5 & -2 \\
0 & 4 & -2 & 9
\end{array}\right)
$$

10) Skew symmetric matrix:

An $\boldsymbol{m} \times \boldsymbol{m}$ matrix $\boldsymbol{A}=\left(\boldsymbol{a}_{i j}\right)$ is said to be skew-symmetric matrix

$$
\text { if }=-\boldsymbol{A}^{T}\left(\text { i.e. } \quad a_{i j}=\left\{\begin{array}{c}
-a_{i j} \text { if } i \neq \boldsymbol{j} \\
0
\end{array} \text { if } i=j, ~\right)\right.
$$

For example $\boldsymbol{A}=\left(\begin{array}{ccc}0 & 5 & -1 \\ -5 & 0 & -2 \\ 1 & 2 & 0\end{array}\right)_{3 \times 3} \quad$ is a skew-symmetric matrix.

11) Idempotent matrix:

If $\boldsymbol{A}^{2}=\boldsymbol{A}$, then \boldsymbol{A} is called idempotent matrix.

Example:

Show that $\quad \boldsymbol{A}=\left(\begin{array}{ccc}2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4\end{array}\right)_{3 \times 3} \quad$ is idempotent matrix.

12) Nilpotent matrix:

If $\boldsymbol{A}^{\boldsymbol{k}}=\mathbf{0}$, where \boldsymbol{k} is a positive integer, then \boldsymbol{A} is called a nilpotent matrix. The least value of \boldsymbol{k} is the index of it.

For example $\quad \boldsymbol{A}=\left(\begin{array}{ccc}1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3\end{array}\right) \quad$ is a nilpotent matrix.

Fundamental properties of matrix multiplication:

Let $\boldsymbol{A}, \boldsymbol{B}$ and \boldsymbol{C} are $\boldsymbol{m} \times \boldsymbol{n}$ matrices and $\boldsymbol{r}, \boldsymbol{k}$ are real numbers, then

1. $A+B=B+A$
2. $A+(B+C)=(A+B)+C$
3. $A+0=0+A=A$, (where 0 is zero matrix)
4. $A+(-A)=(-A)+A=0$
5. $A(B C)=(A B) C$
6. $\boldsymbol{r}(\boldsymbol{k} A)=(\boldsymbol{r k}) A=\boldsymbol{k}(\boldsymbol{r} A)$
7. $A(B+C)=A B+A C$.
8. $(r+k) A=r A+k A$
9. $\boldsymbol{r}(A+B)=r A+r B$
10. $A(r B)=r(A B)$.

Definition: Two square matrices \boldsymbol{A} and \boldsymbol{B} of the some degree are said to be commutative for multiplication if $\boldsymbol{A} \cdot \boldsymbol{B}=\boldsymbol{B} \cdot \boldsymbol{A}$, and is said to be skew commutative if $\boldsymbol{A} \cdot \boldsymbol{B}=-\boldsymbol{B} \cdot \boldsymbol{A}$

Example:

1) $\boldsymbol{A}=\left(\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right), \boldsymbol{B}=\left(\begin{array}{ll}4 & 1 \\ 1 & 4\end{array}\right) \quad$ are commutative.
2) $\boldsymbol{A}=\left(\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right), \boldsymbol{B}=\left(\begin{array}{ll}4 & 1 \\ 4 & 1\end{array}\right) \quad$ are not commutative.
3) $\boldsymbol{A}=\left(\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right), \boldsymbol{B}=\left(\begin{array}{cc}1 & 1 \\ 4 & -1\end{array}\right)$ are skew commutative.
