Chapter Four

System of Linear Equations

Definition -1-: The equation of the straight line in the $x y$-plane can be represented algebraically by an equation of the form

$$
a_{1} x+a_{2} y=b
$$

Where a_{1}, a_{2} and b are real constants and a_{1} and a_{2} are not both zero. An equation of this form is called a linear equation in the variables x and y.
Definition -2-: A linear equation in the n variables $x_{1}, x_{2}, \ldots, x_{n}$ to be one that can be expressed in the form $a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=b$

Where $a_{1}, a_{2}, \ldots, a_{n}$ and b are real constants. The variables in a linear equation are sometimes called unknown.

Example: Which of the following equations are linear?

- $4 x_{1}-5 x_{2}+2=x_{1}$
- $x_{2}=2\left(\sqrt{6}-x_{1}\right)+x_{3}$
- $4 x_{1}-6 x_{2}=x_{1} x_{2}$
- $x_{2}=2 \sqrt{x_{1}}-7$
linear: $3 x_{1}-5 x_{2}=-2$
linear: $2 x_{1}+x_{2}-x_{3}=2 \sqrt{6}$
not linear: $x_{1} x_{2}$
not linear: $\sqrt{x_{1}}$

Definition -3-: A finite set of linear equations in the variables $x_{1}, x_{2}, \ldots, x_{n}$ is called a system of linear equations or linear system. An arbitrary system of m linear equations in n unknowns can be written as

$$
\begin{align*}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \tag{1}\\
& \vdots \\
& \vdots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{align*}
$$

Where $x_{1}, x_{2}, \ldots, x_{n} a$ are unknowns and $a_{i j}$'s and b_{j} 's denote constants, for $i=1,2, \ldots, n$ and $j=1,2, \ldots, m$.
Definition -4-: A solution of a linear system is a list $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ of numbers that makes each equation in the system true when the values $s_{1}, s_{2}, \ldots, s_{n}$ are substituted for $x_{1}, x_{2}, \ldots, x_{n}$, respectively.

Remark: Every system of linear equations has either no solutions, exactly one solution or infinitely many solutions.

When there is no solution the equations are called "inconsistent".
One or infinitely many solutions are called "consistent"

Here is a diagram for $\mathbf{2}$ equations in $\mathbf{2}$ variables:

"Independent" means that each equation gives new information. Otherwise they are "Dependent".

$$
\begin{aligned}
& \text { Ex 1: } 6 \mathrm{x}+14 \mathrm{y}=6 \quad \longrightarrow 6 \mathrm{x}+14 \mathrm{y}=6 \quad \longrightarrow \quad 6 \mathrm{x}+14 \mathrm{y}=6 \\
& -4 x-7 y=-11 \longrightarrow 2[-4 x-7 y=-11] \longrightarrow \quad-8 x-14 y=-22 \\
& -2 x=-16 \\
& \frac{-2 x}{-2}=\frac{-16}{-2} \\
& \begin{array}{c}
\text { 6 } 8(8)+14 y=6 \\
48+14 y=6
\end{array} \\
& -48 \quad-48 \\
& 14 y=-42 \\
& \frac{14 y}{14}=\frac{-42}{14} \\
& y=-3 \quad \text { The solution is }(8,-3) \text {. It is consistent and independent. }
\end{aligned}
$$

Ex 2: $-8 \mathrm{x}+2 \mathrm{y}=-10 \longrightarrow-8 \mathrm{x}+2 \mathrm{y}=-10 \longrightarrow \quad-8 \mathrm{x}+2 \mathrm{y}=-10$

$$
-4 x+y=-2 \quad \longrightarrow-2[-4 \mathrm{x}+\mathrm{y}=-2] \longrightarrow \quad \underline{8 x-2 y=4}
$$

This is a false statement and has no solution.

$$
0=-6
$$

The lines are parallel. It is inconsistent.

Example:

- $x+y=3$
- $2 x+2 y=6$

Those equations are "Dependent", because they are really the same equation, just multiplied by 2.

Example:

- $3 x+2 y=19$
- $x+y=8$

We can start with any equation and any variable.
** The solution of linear system.

$$
\left.\begin{array}{ccc}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \tag{1}\\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots & \vdots & \vdots \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{array}\right\}
$$

We define the matrix A, X and C as follows

$$
\boldsymbol{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right) \quad, \mathrm{X}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)_{n \times 1} \quad \text { and } \mathrm{B}=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right)_{m \times 1}
$$

So the system (1) becomes AX=B. The matrix A is called the coefficient matrix of the system (1) and the matrix of the form

$$
\left(\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{m}
\end{array}\right) \quad \text { is called augmented of system (1) }
$$

Methods for solving system of linear equation

1- Gaussian -Jordan method
Operations for used to solve systems of linear equations.
These operations correspond to the following operations on the rows of the augmented matrix.
a- Multiply a row through by a nonzero constant.
b- Interchange two rows
c- Add a multiple of one row to another row.

Example: Solve the system of linear equation by using Gaussian -Jordan method

$$
\begin{aligned}
& x-2 y+2 z=6 \\
& 2 x+y+3 z=2 \\
& 3 x-2 y+z=5
\end{aligned}
$$

Solution: First we find the augmented matrix of this system

$$
\begin{aligned}
& \begin{array}{l}
R_{1} \\
R_{2} \\
R_{3}
\end{array}\left(\begin{array}{cccc}
1 & -2 & 2 \vdots & 6 \\
2 & 1 & 3 \vdots & 2 \\
3 & -2 & 1 \vdots & 5
\end{array}\right)-2 R_{1}+R_{2}=R_{2} \Rightarrow \\
& \left.\begin{array}{l}
R_{1} \\
R_{2} \\
R_{3}
\end{array}\left(\begin{array}{ccc}
1 & -2 & 2 \vdots \\
0 & 5 & -1 \\
3 & -2 & 1 \\
\hline
\end{array}\right)-5010\right)-3 R_{1}+R_{3}=R_{3} \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
R_{1} \\
R_{2} \\
R_{3}
\end{array}\left(\begin{array}{ccc}
1 & -2 & 2 \vdots \\
0 & 5 & -1 \vdots \\
0 & \frac{-21}{5} \vdots & -5
\end{array}\right) \Rightarrow \\
& x-2 y+2 z=6 \\
& 5 y-z=-10 \\
& \begin{array}{c}
5 y-z=-10 \\
\frac{-21}{5} z=-5 \Rightarrow z=-5 \frac{-5}{21}=\begin{array}{c}
25 \\
y \\
\frac{185}{21}
\end{array} \text { and } \mathrm{x}=\square \frac{294}{21} .
\end{array}
\end{aligned}
$$

Example: Solve the system of linear equation by using Gaussian -Jordan method
$x-5 y+2 z=13$
$3 x-14 y+3 z=29$

$$
4 x-18 y+3 z=35
$$

Solution: First we find the augmented matrix of this system

$$
\begin{aligned}
& R_{1} \\
& R_{2}\left(\begin{array}{cccc}
1 & -5 & 2 \vdots & 13 \\
3 & -14 & 3 \vdots & 29 \\
R_{3} & -18 & 3 \vdots & 35
\end{array}\right)-3 R_{1}+R_{2}=R_{2} \Rightarrow-~-~-~
\end{aligned}
$$

$$
\begin{aligned}
& R_{1}\left(\begin{array}{ccc}
1 & -5 & 2 \vdots 13 \\
R_{2} \\
R_{3} & 1 & -3 \vdots-10 \\
4 & -18 & 3 \vdots 35
\end{array}\right)-4 R_{1}+R_{3}=R_{3} \Rightarrow \\
& R_{1}\left(\begin{array}{ccc}
1 & -5 & 2 \vdots 13 \\
R_{2} \\
R_{3} & 1 & -3 \vdots-10 \\
0 & 2 & -5 \vdots-17
\end{array}\right)-2 R_{2}+R_{3}=R_{3} \Rightarrow \\
& R_{1}\left(\begin{array}{lcc}
1 & -5 & 2 \vdots 13 \\
R_{2} \\
R_{3} & 1 & -3 \vdots-10 \\
0 & 0 & 1 \vdots 3
\end{array}\right) \Longrightarrow
\end{aligned}
$$

$$
x-5 y+2 z=13
$$

$$
\begin{gathered}
y-3 z=-10 \\
z=3,
\end{gathered}
$$

Solve the following equations using matrix methods
1-

$$
\begin{gathered}
x+y+z=9 \\
2 x+5 y+7 z=52 \\
2 x+y-z=0
\end{gathered}
$$

2-

$$
\begin{aligned}
2 x+4 y-z & =9 \\
3 x-y+5 z & =5 \\
8 x+2 y+9 z & =19
\end{aligned}
$$

2- Grammars' rule

If $A X=B$ is a system of n linear equations in n unknowns such that $\operatorname{det}(\mathrm{A}) \neq 0$, then the system has a unique solution. This solution is
$\mathrm{x}_{1}=\frac{\operatorname{det}\left(A_{1}\right)}{\operatorname{det}(A)}, \quad \mathrm{x}_{2}=\frac{\operatorname{det}\left(A_{2}\right)}{\operatorname{det}(A)}, \ldots, \mathrm{x}_{\mathrm{n}}=\frac{\operatorname{det}\left(A_{n}\right)}{\operatorname{det}(A)}$
Where A_{j} is the matrix obtained by replacing the entries in the jth column of A by the entries in the matrix B, where

$$
\begin{aligned}
\boldsymbol{A}_{\mathbf{1}} & =\left(\begin{array}{cccc}
b_{1} & a_{12} & \cdots & a_{1 n} \\
b_{2} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
b_{m} & a_{m 2} & \cdots & a_{m n}
\end{array}\right), \quad \boldsymbol{A}_{2}=\left(\begin{array}{cccc}
a_{11} & b_{1} & \cdots & a_{1 n} \\
a_{21} & b_{2} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & b_{m} & \cdots & a_{m n}
\end{array}\right), \cdots \\
\boldsymbol{A}_{\boldsymbol{n}} & =\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & b_{1} \\
a_{21} & a_{22} & \cdots & b_{2} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & b_{m}
\end{array}\right) .
\end{aligned}
$$

Example: Using Crammer rule to solve the system of linear equations

$$
\begin{aligned}
x+2 z=6 \\
-3 x+4 y+6 z=30 \\
-x-2 y+3 z=8
\end{aligned}
$$

Solution.

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
1 & 0 & 2 \\
-3 & 4 & 6 \\
-1 & -2 & 3
\end{array}\right), A_{1}=\left(\begin{array}{ccc}
6 & 0 & 2 \\
30 & 4 & 6 \\
8 & -2 & 3
\end{array}\right), A_{2}=\left(\begin{array}{ccc}
1 & 6 & 2 \\
-3 & 30 & 6 \\
-1 & 8 & 3
\end{array}\right), A_{3}=\left(\begin{array}{ccc}
1 & 0 & 6 \\
-3 & 4 & 30 \\
-1 & -2 & 8
\end{array}\right) \\
& \operatorname{det}(A)=\left\lvert\, \begin{array}{ccc|c}
1 & 0 & 2 \\
-3 & 4 & 6 & \begin{array}{cc}
1 & 0 \\
-1 & -2
\end{array} \\
\hline-1 & 4 \\
-1 & -2
\end{array}\right. \\
& =12+0+12+8+12+0 \\
& =44
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{det}\left(A_{1}\right)=\left\lvert\, \begin{array}{ccc|cc}
6 & 0 & 2 & 6 & 0 \\
30 & 4 & 6 & 30 & 4 \\
8 & -2 & 3 & 8 & -2
\end{array}\right. \\
& =72+0-120-64+72+0 \\
& =40
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{det}\left(A_{2}\right)=\left\lvert\, \begin{array}{ccc|cc}
1 & 6 & 2 & 1 & 6 \\
-3 & 30 & 6 & -3 & 30 \\
-1 & 8 & 3 & -1 & 8 \\
=90-36-48+60-48+54 \\
=72
\end{array}\right. \\
& =10
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{det}\left(A_{3}\right)=\left|\begin{array}{ccc}
1 & 0 & 6 \\
-3 & 4 & 30 \\
-1 & -2 & 8
\end{array}\right| \begin{array}{cc}
1 & 0 \\
-3 & 4 \\
-1 & -2
\end{array} \\
& =32+0+36+24+60+0 \\
& =152
\end{aligned}
$$

Therefore $\quad x=\frac{\operatorname{det}\left(A_{1}\right)}{\operatorname{det}(A)}=\frac{-40}{44}=\frac{-10}{11}$,

$$
\begin{aligned}
& y=\frac{\operatorname{det}\left(A_{2}\right)}{\operatorname{det}(A)}=\frac{72}{44}=\frac{18}{11}, \\
& z=\frac{\operatorname{det}\left(A_{3}\right)}{\operatorname{det}(A)}=\frac{152}{44}=\frac{38}{11}
\end{aligned}
$$

Example: Using Cramer rule to solve the system of linear equations

$$
\begin{gathered}
x+2 y+3 z=5 \\
2 x+5 y+3 z=3 \\
x+8 z=17
\end{gathered}
$$

Solution: $x=1, y=-1, z=2$.
Example / use the Cramer's rule to solve the following equations

$$
2 x_{1}-3 x_{2}=5
$$

$$
x_{1}+x_{2}=5
$$

Solution:

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
2 & -3 \\
1 & 1
\end{array}\right], A_{1}=\left[\begin{array}{cc}
5 & -3 \\
5 & 1
\end{array}\right], A_{2}=\left[\begin{array}{ll}
2 & 5 \\
1 & 5
\end{array}\right], \text { and } B=\left[\begin{array}{l}
5 \\
5
\end{array}\right] \\
& |A|=[(2 * 1)-(1 *-3)] \rightarrow|A|=5 \\
& \left|A_{1}\right|=[(5 * 1)-(5 *-3)] \rightarrow\left|A_{1}\right|=20 \\
& \left|A_{2}\right|=[(2 * 5)-(1 * 5)] \rightarrow\left|A_{2}\right|=5 \\
& \rightarrow \\
& x_{1}=\frac{\left|A_{1}\right|}{\left|A_{1}\right|} \rightarrow x_{1}=\frac{20}{5} \\
& =4 \\
& x_{1}=\frac{\left|A_{1}\right|}{|A|} \rightarrow x_{1}=\frac{20}{5} \\
& =1
\end{aligned}
$$

Eigen values and Eigen vectors.

Definition -5-: Characteristic polynomial: Let A be an $n \times n$ matrix, $P(\lambda)=\operatorname{det}(A-\lambda I)=|A-\lambda I|$, when expanded will give a polynomial, which we call as characteristic polynomial of matrix A.

Definition-6-: Eigenvalues: Let A be an $n \times n$ matrix.
The characteristic equation of A is $|A-\lambda I|=0$. The roots of the characteristic equation are called Eigenvalues of A.

Definition -7-: Eigenvectors: Let A be an $n \times n$ matrix. If there exist a non zero vector $\mathrm{X}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$ such that $\mathrm{AX}=\lambda \mathrm{X}$, then the vector X is called an Eigenvector of A corresponding to the Eigenvalue λ.

Method of finding characteristic equation of a 3×3 matrix and 2×2 matrix

The characteristic equation of a 3×3 matrix is $\lambda^{3}-S_{1} \lambda^{2}+S_{2} \lambda-S_{3}=0$
Where, $\mathrm{Sl}=$ sum of main diagonal elements.
$S_{2}=$ sum of minor of main diagonal elements.
$\mathrm{S}_{3}=\operatorname{Det}(\mathrm{A})=|\mathrm{A}|$
The characteristic equation of a 2×2 matrix is $\lambda^{2}-S_{1} \lambda+S_{2}=0$
Where, $S_{1}=$ sum of main diagonal elements.
$S_{2}=\operatorname{Det}(A)=|A|$

1. Find the characteristic equation of the matrix $\left(\begin{array}{ll}1 & 2 \\ 0 & 2\end{array}\right)$

Solution:
The characteristic equation is $\lambda^{2}-S_{1} \lambda+S_{2}=0$

$$
\begin{aligned}
\mathbf{S}_{1} & =\text { sum of main diagonal elements } \\
& =1+2=3 \\
\mathbf{S}_{2} & =\operatorname{Det}(\mathrm{A})=|\mathrm{A}| \\
& =\left|\begin{array}{ll}
1 & 2 \\
0 & 2
\end{array}\right| \\
\mathbf{S}_{2} & =2-\mathrm{O}=2
\end{aligned}
$$

The characteristic equation is $\lambda^{2}-3 \lambda+2=0$.
2. Find the characteristic equation of $\left(\begin{array}{ccc}2 & -3 & 1 \\ 3 & 1 & 3 \\ -5 & 2 & -4\end{array}\right)$

Solution:
The characteristic equation is $\lambda^{3}-S_{1} \lambda^{2}+S_{2} \lambda-S_{3}=0$
Where,

$$
S_{1}=\text { sum of the main diagonal elements }
$$ $=2+1-4=-1$

$S_{2}=$ sum of minor of main diagonal elements

$$
\begin{aligned}
& =\left|\begin{array}{cc}
1 & 3 \\
2 & -4
\end{array}\right|+\left|\begin{array}{cc}
2 & 1 \\
-5 & -4
\end{array}\right|+\left|\begin{array}{cc}
2 & -3 \\
3 & 1
\end{array}\right| \\
& =(-4-6)+(-8+5)+(2+9)=-10+(-3)+11=-2 \\
\mathbf{S}_{3} & =\operatorname{Det}(\mathrm{A})=|\mathrm{A}| \\
& =\left|\begin{array}{ccc}
2 & -3 & 1 \\
3 & 1 & 3 \\
-5 & 2 & -4
\end{array}\right| \\
& =2(-4-6)-(-3)(-12+15)+1(6+5) \\
& =2(-10)+3(3)+1(11)=-20+9+11=0
\end{aligned}
$$

The characteristic equation is $\lambda^{3}+\lambda^{2}-2 \lambda=0$

Example: Find the characteristic polynomial, characteristic equation, eigenvalues and eigenvectors of the matrix $A=\left(\begin{array}{ll}3 & 2 \\ 1 & 2\end{array}\right)$

Solution: The characteristic polynomial of A is

$$
P(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
3-\lambda & 2 \\
1 & 2-\lambda
\end{array}\right|=(3-\lambda)(2-\lambda)-2=4-5 \lambda+\lambda^{2}
$$

The eigenvalues of A satisfy the equation $4-5 \lambda+\lambda^{2}=0$. To solve the equation we obtain $\lambda_{1}=1$ and $\lambda_{2}=4$, that is $\binom{\lambda_{1}}{\lambda_{2}}=\binom{1}{4}$

If $\lambda=1$, then $\left(\begin{array}{ll}2 & 2 \\ 1 & 1\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0}$ then $x_{1}+x_{2}=0 \Rightarrow x_{1}=-x_{2}$ If $x_{2}=-1 \Rightarrow x_{1}=1 \Rightarrow\binom{x_{1}}{x_{2}}=\binom{1}{-1}$ is an eigenvector of A corresponding to the eigenvalue $\lambda_{1}=1$

If $\lambda=4$, then $\left(\begin{array}{cc}-1 & 2 \\ 1 & -2\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0}$ then $-x_{1}+2 x_{2}=0 \Rightarrow x_{1}=2 x_{2}$
If $x_{2}=2 \Rightarrow x_{1}=4 \Rightarrow\binom{x_{1}}{x_{2}}=\binom{4}{2}$ is an eigenvector of A corresponding to the eigenvalue $\lambda_{2}=4$.

Example: Find the eigenvalues of the matrix $A=\left(\begin{array}{lll}2 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 4\end{array}\right)$.
Solution: The characteristic polynomial of A is

$$
\begin{aligned}
P(\lambda)=\operatorname{det}(A-\lambda I) & =\left|\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 3 & 1 \\
0 & 0 & 4
\end{array}\right)-\lambda\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right|=\left|\left(\begin{array}{ccc}
2-\lambda & 1 & 0 \\
0 & 3-\lambda & 1 \\
0 & 0 & 4-\lambda
\end{array}\right)\right| \\
& =(2-\lambda)(3-\lambda)(4-\lambda)
\end{aligned}
$$

The eigenvalues of A satisfy the equation $(2-\lambda)(3-\lambda)(4-\lambda)=0$. To solve the equation we obtain $\lambda_{1}=2, \lambda_{2}=3$ and $\lambda_{3}=4$ are the eigenvalue of a matrix A

Example: Find the eigenvalues and eigenvectors of the matrix $A=\left(\begin{array}{lll}0 & 0 & 3 \\ 0 & 3 & 0 \\ 3 & 0 & 0\end{array}\right)$
Solution: The characteristic polynomial of A is

$$
\begin{aligned}
P(\lambda)=\operatorname{det}(A-\lambda I) & =\left|\left(\begin{array}{lll}
0 & 0 & 3 \\
0 & 3 & 0 \\
3 & 0 & 0
\end{array}\right)-\lambda\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right|=\left|\left(\begin{array}{ccc}
-\lambda & 0 & 3 \\
0 & 3-\lambda & 0 \\
3 & 0 & -\lambda
\end{array}\right)\right| \\
& =(\lambda-3)(\lambda+3)(\lambda-3)
\end{aligned}
$$

The eigenvalues of A satisfy the equation $(\lambda-3)(\lambda+3)(\lambda-3)=0$. To solve the equation we obtain $\lambda_{1}=3, \lambda_{2}=3$ and $\lambda_{3}=-3$ are the eigenvalue of a matrix A

If $\lambda_{1}=3$, then $\left(\begin{array}{ccc}-3 & 0 & 3 \\ 0 & 0 & 0 \\ 3 & 0 & -3\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$ then $\quad-3 x_{1}+3 x_{3}=0 \Rightarrow x_{1}=$ x_{3} and $\quad x_{2} \in R$, if $\quad x_{3}=1$ and $x_{2}=2$ then $x_{1}=1 \Rightarrow\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$ is an eigenvector of A corresponding to the eigenvalue $\lambda_{1}=3$.

And if $x_{3}=2$ and $x_{2}=4$ then $x_{1}=2 \Rightarrow\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}2 \\ 4 \\ 2\end{array}\right)$ is an eigenvector of A corresponding to the eigenvalue $\lambda_{2}=3$.

If $\lambda_{3}=-3$, then $\left(\begin{array}{lll}3 & 0 & 3 \\ 0 & 0 & 0 \\ 3 & 0 & 3\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$ then $3 x_{1}+3 x_{3}=0 \Rightarrow x_{1}=-x_{3}$ and
$x_{2} \in R$, if $x_{3}=-1$ and $x_{2}=2$ then $x_{1}=1 \Rightarrow\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right)$ is an eigenvector of A corresponding to the eigenvalue $\lambda_{3}=-3$.

Theorem1: If n is a positive integer, λ is an eigenvalue of a matrix A and x is a corresponding eigenvector, then λ^{n} is an eigenvalue of A^{n} and x is a acorresponding eigenvector.

Theorem 2: If λ is an eigenvalue of an invertible matrix A and x is a corresponding eigenvector, then $1 / \lambda$ is an eigenvalue of A^{-1} and x is a corresponding eigenvector

Theorem 3: If λ is an eigenvalue of matrix A then $k \lambda$ is an eigenvalue of matrix $k A$ where k is a constant.

Exercise: 1) Find the characteristic equations of the following matrices:
(a) $\left(\begin{array}{cc}10 & -9 \\ 4 & -2\end{array}\right)$
(b) $\left(\begin{array}{ccc}-2 & 0 & 1 \\ -6 & -2 & 0 \\ 19 & 5 & -4\end{array}\right)$.
2) Let $A=\left(\begin{array}{lll}-2 & 2 & 3 \\ -2 & 3 & 2 \\ -4 & 2 & 5\end{array}\right)$. Then find the eigenvalues of
(a) A^{-1}
using Theorem 2
(b) A^{4} using Theorem 1
(c) $A+2 I$
(d) $3 \mathrm{~A} \quad$ using Theorem 3

