Chapter Five

Mathematical induction

Mathematical induction is a proof technique that allows us to prove some mathematical statement, let's call it $\mathrm{P}(\mathrm{n})$, that depends on n . Sometimes it is an equation, or an inequality, and sometimes it is a sentence with mathematical meaning. Notice that in both cases n should be a variable in the statement. So that we can plug n into $\mathrm{P}(\mathrm{n})$. We get a statement that we can often check by hand.

Step of mathematical induction:
Step (1): Show that the result is true for $\mathrm{n}=1, \mathrm{P}(1)$ is true.
Step (2): Assume the result is true for $\mathrm{n}=\mathrm{k}, \mathrm{P}(\mathrm{k})$ is true,
Step (3): Show that the result is true for $\mathrm{n}=\mathrm{k}+1, \quad \mathrm{P}(\mathrm{k}+1)$ is true.
Example 1: Use mathematical induction to prove that

$$
\sum_{i=1}^{n} i=1+2+3+4+5+6+\cdots+n=\frac{n(n+1)}{2}
$$

Solution: Note: $S_{1}=1$

$$
\begin{aligned}
& S_{2}=1+2=3=S_{1}+2 \\
& S_{3}=1+2+3=6=S_{2}+3 \\
& S_{4}=1+2+3+4=10=S_{3}+4 \\
& S_{5}=1+2+3+4+5=15=S_{4}+5 \\
& S_{6}=1+2+3+4+5+6=21=S_{5}+6 \\
& \quad \vdots \\
& S_{k+1}=S_{k}+t_{k+1}
\end{aligned}
$$

Step (1): Verify the result is true for $\mathrm{n}=1$, then the left-hand side of (1) is equal to 1 . The right hand side of (1) is equal to $\frac{1(2)}{2}=1$. So the result is true for $\mathrm{n}=1$.
$\operatorname{Step}(2)$ Assume that the result is true for $\mathrm{n}=\mathrm{k}, S_{k}=1+2+3+\cdots+k=\frac{k(k+1)}{2}$,

Step (3): Show that the result is true for $\mathrm{n}=\mathrm{k}+1$,

$$
\begin{aligned}
S_{k+1}=1+2+3+\cdots+k+(k+1) & =\frac{(k+1)((k+1)+1)}{2} \\
& =\frac{(k+1)(k+2)}{2}
\end{aligned}
$$

Now, $S_{k+1}=S_{k}+t_{k+1}=\underbrace{1+2+3+\cdots+k}_{S_{k}}+\underbrace{(k+1)}_{t_{k+1}}$
$=\frac{k(k+1)}{2}+(k+1)$. Since $\mathrm{P}(\mathrm{k})$ is true

$$
=\frac{k(k+1)}{2}+\frac{2(k+1)}{2}
$$

$$
=\frac{(k+1)(k+2)}{2}
$$

Thus we have proven that $\mathrm{P}(\mathrm{k}+1)$ is true.
Therefore, the result is true for all n .
Example 2: Prove

$$
6+12+18+\cdots+6 n=3 n(n+1) \text { for all } n \in \mathbb{N}
$$

Solution:

Step (1): Verify the result is true for $\mathrm{n}=1$, then the left-hand side of (1) is equal to 6 . The right hand side of (1) is equal to $3(1)(1+1)=(3)(2)=6$. So the result is true for $\mathrm{n}=1$.
Step(2) Assume that the result is true for $\mathrm{n}=\mathrm{k}$,
$S_{k}=6+12+18+\cdots+6 k=3 k(k+1)$,
Step (3): Show that the result is true for $\mathrm{n}=\mathrm{k}+1$,

$$
\begin{array}{r}
S_{k+1}=6+12+\cdots+6 k+6(k+1)=3(k+1)((k+1)+1) \\
=3(k+1)(k+2)
\end{array}
$$

Now, $S_{k+1}=S_{k}+t_{k+1}=\underbrace{6+12+18+\cdots+6 k}_{S_{k}}+6 \underbrace{(k+1)}_{t_{k+1}}=3 k(k+1)+6(k+1)$

$$
=3(k+1)(k+2) .
$$

Thus we have proven that $\mathrm{P}(\mathrm{k}+1)$ is true. Therefore the result is true for all n .

Example 3:

$$
1+3+5+\cdots+(2 n-1)=n^{2}, \text { for all } n \in \mathbb{Z}^{+}
$$

Solution:

Step (1): Verify the result is true for $\mathrm{n}=1$, then the left-hand side of (1) is equal to 1 . The right hand side of (1) is equal to 1^{2}
Step (2): Assume that the result is true for $\mathrm{n}=\mathrm{k}, S_{k}=1+3+5+\cdots+(2 k-1)=k^{2}$,
Step (3): Show that the result is true for $\mathrm{n}=\mathrm{k}+1$,
$S_{k+1}=1+3+5+\cdots+(2 k-1)+(2(k+1)-1)=(k+1)^{2}$
Now, $S_{k+1}=S_{k}+t_{k+1}=\underbrace{1+3+5+\cdots+(2 k-1)}_{S_{k}}+\underbrace{(2(k+1)-1)}_{t_{k+1}}$

$$
\begin{aligned}
& =k^{2}+(2 k+2-1) \\
& =k^{2}+2 k+1 \\
& =(k+1)^{2}
\end{aligned}
$$

Thus we have proven that $\mathrm{P}(\mathrm{k}+1)$ is true.
Therefore, the result is true for all n .

Example 4: Prove

$2+8+14+\cdots+(6 n-4)=n(3 n-1)$ for all positive integer n.
Example 5.

$$
\text { For all } n \in \mathbb{N}, 2^{n}>n
$$

Solution:

Step (1): Verify the result is true for $\mathrm{n}=1$, then $2^{1}>1$.
$\operatorname{Step}(2)$: Assume that the result is true for $\mathrm{n}=\mathrm{k}$, then $2^{k}>k$.
Step (3): To show that the result is true for $\mathrm{n}=\mathrm{k}+1,2^{k+1}>k+1$
Now, since $2^{k}>k$ then $2^{k}>1 \Rightarrow 2^{k}+2^{k}>k+1$

$$
\begin{aligned}
& \Rightarrow 2\left(2^{k}\right)>k+1 \\
& \Rightarrow 2^{k+1}>k+1
\end{aligned}
$$

Thus we have proven that $\mathrm{P}(\mathrm{k}+1)$ is true.
Therefore, the result is true for all n .

Example 6: Prove $\mathrm{n}^{3}-\mathrm{n}$ is divisible by 3 for all positive integers
Solution:
Step (1): Verify the result is true for $\mathrm{n}=1$. Then $1^{3}-1=0$ is divisible by 3 .

Step(2): Assume that the result is true for $\mathrm{n}=\mathrm{k}$, then $\mathrm{P}(\mathrm{k})=k^{3}-k$ is divisible by 3 .
Step(3): To show that the result is true for $\mathrm{n}=\mathrm{k}+1, \mathrm{P}(\mathrm{k}+1)=(k+1)^{3}-(k+$ 1) is divisible by 3

Now, $(k+1)^{3}-(k+1)=k^{3}+3 k^{2}+3 k+1-k-1$

$$
=\left(k^{3}-k\right)+3\left(k^{2}+k\right)
$$

is divisible by 3 is divisible by 3
Thus $P(k+1)==(k+1)^{3}-(k+1)$ is divisible by 3
Therefore, the result is true for all positive integer n .
Example: Prove that
$1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}$, for all positive integer n

Exercises.

Prove the following by mathematical induction:
(a) $\quad \sum_{i=1}^{n} i(i+1)(i+2)=\frac{n(n+1)(n+2)(n+3)}{4}$
(b) $\quad \sum_{i=1}^{n}(i+2)(3 i+1)=n(n+2)(n+3)$
(c) $\quad \sum_{i=1}^{n} \operatorname{ar}^{i-1}=\frac{a\left(r^{n}-1\right)}{r-1}$

