INTRODUCTION TO CONTROL Systems

Lecture_00

Module Name – Code	Control Engineering – MME4027
Module Language:	English
Responsible:	Dr. Chalang H. R. Mohammed
Lecture:	Dr. Chalang H. R. Mohammed
College:	College of Engineering – Salahaddin University
Duration:	15 week - 1 semester (hrs 4/23)
Course outcomes:	This semester course is intended to present the
	basic principles and techniques for the design of
	feedback control systems. At this point in this study
	the students have mastered the prerequisite topics
	such as dynamics and the basic mathematical tools
	that are needed for analysis. Moreover, they will be
	familiars with the controller (PID) to maintain the
	output(s) variable within a desired range. This can
	be obtained by understanding the concepts of
	performance and stability. Control system design
	relies on student's knowledge in these fields but
	also requires additional skills in system interfacing.

Course	Reviewing relative mathematical continuous dynamics. Later, the
Content:	SISO Modelling of some processes; such as mechanical, electrical,
	liquid. Also, modelling of some actuators; which are electric motor,
	pneumatic and hydraulic. Later, the PID; namely pneumatic
	controller will be introduced and studied with main versions. The
	block diagram and signal flow graph to obtain a final behavior of some
	sub-systems will be analyzed. Then, the main criteria of performance
	and stability will be learned. In addition, the design and maintenance
	due to applied inputs discuss to obtain an acceptable overall system.
	Finally, the state space representations and transformations to MIMO
	will be explained.
Literature:	Katsuhiko Ogata . "Modern Control Engineering". 2002
	Franci H.Raven . "Automatic Control Engineering". 2017
	Nise."Control System Engineering". 2011
Type of	Face to Face learning
Teaching:	4 hrs in lectures
Pre-	Background in physical behavior, electrical machines, advanced
requisites:	analysis (ode, Laplace, matrices trance formations) are recommended

Frequency:	Yearly in fall semester
Requirements	For the award of credit points it is necessary to pass the module
for credit	exam. The module exam contains:
points:	Written (Written 90 min for med & 120 min final]
	Written exam – Med term : 20% quizzes : 10 % Poster: 5%
	HW & assignments: 5%
	Written exam- Final exam: 60%
	Student's attendance is required in all classes. Students with
	more than 10% absence and/or less than 15% effort in continuous
	exams are NOT allowed to attend the final exam.
a 1	
Credit point:	unit theory 4/19
Grade	The Grade is generated from the examination result(s) with the
Distribution:	following weights (w):
	Theoretical Part "w": 100% [20% midterm exam + 60% final
	Exam + 20% HW, report, quizzes and assignments]
	4

1.	Introduction to Control Systems and Measurements
2.	Introduction to Signals, System dynamics, and Laplace transform definition
3.	Introduction to modelling and Modelling linear mechanical components.
4	Modelling rotational mechanical components. [quiz] The Academic Season Progr
5.	Linear electric elements and examples (Examples)
6.	Modelling of liquid level system [quiz]
7.	Modelling of thermal system (Example)
8.	Modelling pneumatic system and P controller [quiz]
9.	Modelling pneumatic system and I, and PI controllers
10.	Modelling pneumatic PID controller & actuator (Example)
11.	Modelling hydraulic actuator & controller (I) [quiz]
12	Block diagram method of solution
13.	Examples on Block diagram method of solution
14	Signal flow graphs method of solution (Examples)
15.	Time domain Performance of control systems [quiz]
16	Performance criteria (step input) (Examples)
17	Performance criteria (step input) (Examples) [quiz]
18	Steady state errors e _{stst} & error constants (position, velocity and acceleration transfer functions)
19	Design systems based on e _{stst} (Examples)
20	Generalized error series (Examples) [quiz]
21.	Med Term Exam
22.	s-plane and 2 nd Order System Performance Parameters
23.	Introduction to Stability analysis: Absolute stability & Relative stability
24	Stability s-domain: Routh-Hurwitz criterion & design (Examples) [quiz]
25	Stability frequency response: Bode plot criterion & design (Examples)
26.	Examples on Bode plot criterion
27.	State space representation [quiz]
28	Analysing and solution of state space representations (Examples)
29.	Review
30	Final Exam

Due to a number of unforeseen reasons that may lead to shifting of the academic year program, it may be subjected to modifications. Also extra curriculum hours may be needed to cover all the topics. The students shall be notified of the changes if and when they may occur.