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Roots of NON- linear Equations 
 
What is meant by the nonlinear equation: It is that equation which contains different powers for x or 

triangular functions or exponential functions or logarithmic. 
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Solution Methods 
 
 
 
 
 
 
 
 
 
Analytical Solutions are available for special equations only.  
 
 
 
 
 
 
 
 

2. Graphical Methods 
This is the simplest method to determine the root of an equation   0xf . The procedure is quite straightforward: 

- Plot the function  xf  

- Observe when it crosses the x-axis, this point represents the value for which   0xf . 

Note 1: This will provide only a rough approximation of the root. 
Note 2: you can remark that the function has changed sign after the root. 
 
 

 
 

 Several ways to solve nonlinear equations are possible: 

1. Analytical Solutions Possible for special equations only. 
2. Graphical Solutions Useful for providing initial guesses for other methods. 
3. Numerical Solutions need initial point to start. 

1-Analytical Methods 
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Locating the position of roots (programming method): 

 To locate the position of roots of the function (equation) f(x)=0 by using programming method, 

let f(x) be continuous function on the interval [a,b]. We divide the interval [a,b] into n subintervals 

a=x0<x1<…<xn-1<xn=b where xi=a+ih, i=0, 1, … ,n; h=
n

ab 
. If f(xi)f(xi+1)<0 for any   0 i n , then 

there exits c, a<c<b for which f(c)=0. 

Example 1:  

Find the approximate location of the function  

1. f(x)=x4-7x3+3x2+26x-10=0  on the interval [-8,8] with n=4 and n=8.. 

2. f(x)=x3+4x2-10=0   on the interval [1,2] with n=5. 

3. f(x)=x3-4x+1=0   on the interval [-1,4] with n=5. 

Solution: (1):  Let n=4, h= 4
4

)8(8







n

ab
 

x -8 -4 0 4 8 

f(x) + + - - + 

There is a root between (-4,0) and (4,8). 

If n=8, h=2: 

x -8 -6 -4 -2 0 2 4 6 8 

f(x) + + + + - + - + + 

There is a root between (-2,0), (0,2), (2,4) and (4,6). 

Solution: (2): Let n=5, h=0.2 

x 1 1.2 1.4 1.6 1.8 2 

f(x) - - + + + + 

There is a root between (1.2,1.4). 
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Solution: (3): Let n=5, h=1 

x -1 0 1 2 3 4 

f(x) + + - + + + 

There is a root between (0,1) and (1,2). 

 

3. Numerical Solutions 
A. Bisection method (bracketing methods) 

One of the first numerical methods developed to find the root of a nonlinear equation 0)( xf  was the bisection 

method (also called Binary-Search method).  The method is based on the following theorem: 
 
 
 
 
 
 
 
 
 
Since the method is based on finding the root between two points, the method falls under the category of bracketing 
methods. 
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Figure. At least one root exists between two points if the function is real, continuous, and changes sign. 
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Figure. If the function )(xf  does not change sign between two points, there may not be any roots 0)( xf  between the two points. 

 

Theorem: An equation 0)( xf , where )(xf  is a real continuous function, has at least one 

root between 
1x and 

2x if 0)()( 21 xfxf .     

Note that if 0)()( 21 xfxf , there may or may not be any root between 
1x and 

2x  If

0)()( 21 xfxf , then there may be more than one root between 
1x and 

2x  .  



2nd Stage                                               Lecture 3 /Theory                                                           Numerical Analysis   
 

4 | P a g e                                                                                  Numerical Analysis | A . L . D a l y a A . A n w a r 
 

 

 x 

 f(x) 

 xu 
 x 

   
Figure. If the function )(xf  changes sign between two points, more than one root for 0)( xf  may exist between the two points. 

 

 
 
 

                                                          
                                                                                                              

 
  
 
 

 
 
 
 
 
 
 
  

Assumptions:   

- f(x) is continuous on [a,b]  
- f(a) f(b) < 0   

Algorithm: 

 

Loop 

  1. Compute the mid point  c=(a+b)/2 

  2. Evaluate f(c),if f(c)=0, c is the root. 

  3. If    f(a) f(c) < 0  then  new interval [a, c] 

      If    f(a) f(c) > 0  then  new interval [c, b]     

End loop 
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stopping criteria Two common stopping criteria 
  

1. Stop after a fixed number of iterations 
2. Stop when the absolute error is less than a specified value 

 

Convergence Analysis 
 
 
 
 
 
 
 
 
 
 
 
Example 
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Example:  

 

 

Example : Find the root of: 
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B- False Position Method 

Another popular algorithm is the method of false position or the regula false 

method. It was developed because the bisection method converges at a fairly slow speed. 

As before, we assume that  f(a) and  f(b) have opposite signs. The bisection method used 

the midpoint of the point [ a,b ] as the next iterate. A better approximation is obtained if 

we find the point (c, 0) where the line L joining the point (a, f(a)) and (b, f(b)) crosses the 

x-axis.  
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                             𝑐 = 𝑏 − 𝑓(𝑏)(𝑏−𝑎)

𝑓(𝑏) −  𝑓(𝑎)
.  

The three possibilities are the same as before:  

(a)   If f(a) and f(c) have opposite signs, a zero lies in [a, c].  

(b)   If f(c) and f(b) have opposite signs, a zero lies in [c, b]. 

(c)   If f(c) =0, then zero is c. 
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Note: radians and degrees are both units of measurement of the unit circle. 

radians = (degrees x pi) / 180 

degrees = (radians x 180) / pi 

Example : Use the false position method to find the root of   x sin(x) – 1 = 0  

that is located in the interval [0, 2]. (Use radians unit)  

Starting with a0 = 0 and b0 = 2, we have f(0) =  – 1.00000000 and 

 f(2) = 0.81859485, so a root lies in the interval [0, 2].  

𝑐0 = 2 −
0.81859485(2−0)

0.81859485−(−1)
= 1.09975017  and  𝑓(𝑐0) = −0.02001921.  

The function changes sign on the interval [c0, b0] = [1.09975017, 2], so we squeeze from 

the left and set a1 = c0 and b1 = b0. the next approximation:  

𝑐1 = 2 −
0.81859485(2−1.09975017)

0.81859485−(−0.02001921)
= 1.12124074  

and  𝑓(𝑐1) = 0.00983461.  

Next f(x) changes sign on [a1, c1] = [1.09975017, 1.12124074], and the next decision is to 

squeeze from the right and set a2 = a1 and b2 = c1. A summary of the calculations is gives 

in Table below  

 

Table:  False Position Method Solution of x sin(x) – 1 = 0  

K a b c Function value, f(c) 

1 

2 

3 

4 

0.00000000 

1.09975017 

1.09975017 

1.09975017 

2.00000000 

2.00000000  

1.12124074 

1.11416120 

1.09975017 

1.12124074 

1.11416120 

1.11415714  

– 0.02001921 

0.00983461 

0.00000563 

0.00000000 

 

 


