Ministry of Higher Education & Scientific Research

Salahaddin University-Erbil

College of Administration and Economics

Statistics & Informatics Department

High Diploma

QUESTIONS BANK OF MULTIVARIATE STATISTICAL ANALYSIS

01/ Are the following statements TRUE or FALSE? Correct the false statements?

- In multivariate statistical analysis, the word "multivariate" indicates that in a single analysis two dependent variables are simultaneously used.
- 2) $X_{jk} = \text{The } j^{th} \text{ item for the measurement of the } k^{th} \text{ variable.}$
- 3) Comparing the means of the weight, length, and blood sugar level variables for people in Iraq, France, Japan, and Iran is an example of analysis of variance (ANOVA).
- 4) (ABC)' = A'B'C'

6) If
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 4 \\ 0 & 5 & 9 \\ 4 & 9 & -1 \end{bmatrix}$$
 and let $\mathbf{C} = \begin{bmatrix} 2 & 0 & 4 \\ 2 & 1 & 4 \\ 3 & 1 & 4 \end{bmatrix}$, then $tr(C^{-1}AC) = 5$

4)
$$(ABC) = A B C$$

5) When $A^{-1} = A'$, A is called Idempotent matrix.
6) If $\mathbf{A} = \begin{bmatrix} 1 & 0 & 4 \\ 0 & 5 & 9 \\ 4 & 9 & -1 \end{bmatrix}$ and let $\mathbf{C} = \begin{bmatrix} 2 & 0 & 4 \\ 2 & 1 & 4 \\ 3 & 1 & 4 \end{bmatrix}$, then $tr(C^{-1}AC) = 5$
7) Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 9 \\ 0 & 9 & -1 \end{bmatrix}$ and $\underline{X} = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$. Then, quadratic form $Q(\underline{X}) = x_1^2 + 9x_1x_2 + 5x_2^2 + 2x_3^2$

8) If
$$\underline{X} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 and $A = \begin{bmatrix} 4 & -1 \\ -1 & 4 \end{bmatrix}$, then $Q(\underline{X})$ is p.s.d.
9) If $A = \begin{bmatrix} -7 & 0 \\ 0 & 7 \end{bmatrix}$, then $Q(\underline{X})$ is p.d.

9) If
$$A = \begin{bmatrix} -7 & 0 \\ 0 & 7 \end{bmatrix}$$
, then $Q(\underline{X})$ is p.d.

10) If
$$\underline{X}^{(1)}$$
, $\underline{X}^{(2)}$ are dependent, then $E\left(\underline{X}^{(1)} - \underline{\mu}^{(1)}\right) \left(\underline{X}^{(2)} - \underline{\mu}^{(2)}\right)' = \mathbf{0}$

- 11) In multivariate statistical analysis, the word "multivariate" indicates that two or more dependent variables are simultaneously used in a single analysis.
- 12) Correlation for multiple regression predictions always infers causation.
- 13) The higher the multicollinearity, the smaller the standard error for the regression coefficients.
- 14) Data errors and observations which represent extreme magnitudes on variables are both causes of outliers.

Q2/ For the following data that are normally distributed $(\underline{X} \sim N(\mu, \Sigma))$, find X matrix, mean vector, var-covar matrix, and prove or disprove that $\underline{X}^{(1)}$ and $\underline{X}^{(2)}$ are independent, if:

$\underline{X}^{(1)} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \underline{X}^{(2)} = [x_3]$						
x_1	1	2	3	4	5	
x_2	5	4	3	2	1	
<i>x</i> ₃	-2	-2	-2	-2	-2	

Q3/ Let
$$\underline{X} \sim N(\underline{\mu}, \Sigma)$$
, where $\underline{X} = \begin{bmatrix} \underline{X}^{(1)} \\ \underline{X}^{(2)} \end{bmatrix}$, $\Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$

If $\underline{X}^{(1)}$ and $\underline{X}^{(2)}$ are independent. Show that $\Sigma_{12} = 0$

Q4/ If the quadratic form $Q(\underline{X}) = 2x_1^2 + 4x_3^2 + 2x_1x_2 + 6x_2x_3 + 5x_4^2 + 7x_1x_3$

Find:

- 1. The matrix A,
- 2. What is the classification of $Q(\underline{X})$ and why? (p.d., p.s.d, n.d., n.s.d)

Q5/ Multiple choices: Select the best answer for the following statements:

*	used when a numerical predictor has a curvilinear relationship with the response.					
	a. Simple regression	b. Multiple regression	c. Quadratic regression			
	d. all of them	e. None of them				
*		umptions of the regression mode	el.			
-	a. Stepwise regression	b. R ² Adjusted c. C	Correlation			
	d. all of them	e. None of them				
*			of association between x and y.			
	a. Residual plots	b. independent variable	c. dependent variable			
	d. bar chart		•			
*		when the information provided b	by several predictors overlaps.			
-		b. Logistic regression				
	d. Error		Ž			
		v				
06	/ Fill the blanks for the fo	llowing statements:				
		tion strategy in factor analysis is				
			allows you to evaluate the relationship			
		with the effects of a third remov	•			
	✓ The number of possible discriminant functions in a discriminant analysis is limited to					
		, which				
			t, the calculation of variability can be			
	found in		•			
07	/ For every vector α if $X^{()}$	$^{(1)}$ and $X^{(2)}$ are independent. Let	X_i be any Component of $X^{(1)}$, Show			
V'		nation $\underline{\alpha} X^{(2)}$ Which is Minimize				
	That for all linear Combin	$\underline{\alpha} \underline{\lambda}$ which is within $\underline{\alpha}$	e the variance $(x_i - \underline{\alpha}\underline{x})$.			
Δ0	/TC 1 /1 T7 ' 11	$\rho_{12}^2 + \rho_{13}^2 - 2\rho_{12}\rho_1$	$(13\rho_{23})$ $(12\rho_{13}-\rho_{12}\rho_{23})^2$			
Q8	If we have three Variables	$S(p=3), R_{1.23}^2 = \frac{12 + 12 + 12 + 12}{(1 - \rho_{23}^2)}$	$_{13}\rho_{23}$, and $\rho_{13.2}^2 = \left(\frac{\rho_{13} - \rho_{12}\rho_{23}}{\sqrt{1 - \rho_{12}^2}\sqrt{1 - \rho_{23}^2}}\right)^2$.			
	Prove that $1 - R_{1,23}^2 =$	$(1-\rho_{12}^2)(1-\rho_{132}^2)$	(, , <u>, , , , , , , , , , , , , , , , , </u>			