Chapter Two

Matrix Algebra

1. Transpose

If A is square matrix Then

- I. (A')' = A
- II. (A + B)' = A' + B'
- III. If $A'A = AA' \Rightarrow$ Then A is a symmetric matrix, for instance:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 1 \end{bmatrix}$$

IV. If $AA' = 0 \Rightarrow A = 0$

$$V. \quad (AB)' = B'A'$$

2. Multiplication

- I. AI = IA = A, what is I matrix?
- II. A0 = 0A = 0, what is 0 matrix?
- III. In general, $AB \neq BA$

But AB = BA if:

- A = B or B = A
- *A* or *B* is identity matrix
- If A or B is zero Matrix
- If $A = B^{-1}$ or $B = A^{-1}$
- If A or B is diagonal matrix, for instance

$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

IV. If D_1 and D_2 are two diagonal matrices of all the **same order** then

$$D_1 D_2 = D_2 D_1$$

3. Determinants

Defⁿ: For any square matrix $A_{n,n}$, then the determinant of A (|A|) is defined by:

$$|\mathbf{A}| = \sum a_{ij} A_{ij}$$

Where A_{ij} is the cofactor of a_{ij} which is equal to $A_{ij} = (-1)^{i+j} \times \text{minor}$ The minor of element a_{ij} is the determinant of the sub matrix A obtained by deleting the ith row and the jth column of A.

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Arrow Method to Find Determinants:
$$|A| = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{12} & a_{23} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$$
$$|A| = (a_{11}, a_{22}, a_{33}) + (a_{12}, a_{23}, a_{31}) + (a_{13}, a_{21}, a_{32}) - (a_{13}, a_{22}, a_{31}) + (a_{13}, a_{21}, a_{22}) + (a_{13}, a_{22}, a_{32}) + (a_{13}, a_{22}, a_{32}) + (a_{13}, a_{22}, a_{23}) + (a_{13}, a_{22}, a_{23}) + (a_{13}, a_{21}, a_{22}) + (a_{13}, a_{21}, a_{22}) + (a_{13}, a_{22}, a_{31}) + (a_{13}, a_{21}, a_{22}) + (a_{13}, a_{22}, a_{23}) + (a_{13}, a_{23}, a_{23}, a_{23}) + (a_{13}, a_{23}, a_{23}) + (a_{13}, a_{23}, a_{23}) + (a_{13}, a_{23}, a_{23}) + (a_{13}, a_{23}, a_$$

Theorems about the properties of determinants:

- 1. The Determinates of a diagonal matrix or identity matrix is the product of diagonal elements.
- 2. Let A be (n * n) matrix, then B obtained from A by multiply row (or column) of A by a scalar C, then |B| = C|A|
- 3.If B obtained from A by interchanging two rows or columns, Then |B| = -|A|
- 4.If a row or column of a square matrix is zero, then the determinant is zero.
- 5. If two rows or columns in *A* are similar, Then |A| = 0
- 6.If A has an inverse, then $|A^{-1}| = |A|^{-1} = \frac{1}{|A|}$
- 7. If A and B have determinants and in the same order, Then |AB| = |A||B|

4. Matrix Inverse

$$A^{-1} = \frac{adj(A)}{\det(A)} = \frac{[Cof(a_{ij})]'}{|A|} = \frac{[(-1)^{(i+j)} \times M_{ij}]'}{|A|} \text{ if } |A| \neq 0$$

where, $M_{ij} = minor(a_{ij})$

Example: find A^{-1} for the matrix A

$$A = \begin{bmatrix} 2 & 2 \\ 4 & 5 \end{bmatrix}$$

Solution:

$$A^{-1} = \frac{adj(A)}{|A|}$$

$$Adj(A) = Adj \begin{bmatrix} 2 & 2 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 5 & -2 \\ -4 & 2 \end{bmatrix}$$

$$|A| = \begin{vmatrix} 2 & 2 \\ 4 & 5 \end{vmatrix} = (2 * 5) - (2 * 4) = 2$$

$$A^{-1} = \begin{bmatrix} 5 & -2 \\ -4 & 2 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 2.5 & -1 \\ -2 & 1 \end{bmatrix}$$

- $(A^{-1})^{-1} = A$
- If *A* and *B* have Inverse and have the same order Then $(AB)^{-1} = B^{-1}A^{-1}$
- If *K* is *non zero* scalar and *A* has an inverse then

$$(KA)^{-1} = \frac{1}{K}A^{-1}$$

5. Orthogonal Matrix

Defⁿ: The square matrix A is an Orthogonal if: $A^{-1} = A'$. An example of this kind of matrices is as follows:

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \qquad A^{-1} = A^{T} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$
$$A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

• If *A* is an Orthogonal matrix then *A* exists and is Orthogonal **Proof:**

 $A^{-1} = A'$ $(A^{-1})^{-1} = (A')^{-1}$ $A = (A^{-1})^{-1}$ A = A

• If *A* and *B* are two Orthogonal matrix and have the same order, then (*A*. *B*) is an Orthogonal.

Proof: $A^{-1} = A', B^{-1} = B'$ $(AB)^{-1} = (AB)'$ $(AB)^{-1} = B^{-1}A^{-1} \quad \because A, B \text{ are Orthogonal}$ (AB)' = B'A' $\therefore B^{-1}A^{-1} = B'A'$

• The Determinant of an Orthogonal matrix is either (+1) or (-1)

6. Idempotent Matrix

If A is square matrix of order n, then is called Idempotent matrix if:

$$A^2 = A \cdot A = A$$

Example: $B = \begin{bmatrix} 4/5 & -2/5 \\ -2/5 & 1/5 \end{bmatrix}$ Show that *B* is idempotent matrix? Solution:

$$B \cdot B = B$$

$$B \cdot B = \begin{bmatrix} 4/5 & -2/5 \\ -2/5 & 1/5 \end{bmatrix} \cdot \begin{bmatrix} 4/5 & -2/5 \\ -2/5 & 1/5 \end{bmatrix}$$

$$B \cdot B = \begin{bmatrix} \frac{16}{25} + \frac{4}{25} & -\frac{8}{25} - \frac{2}{25} \\ -\frac{8}{25} - \frac{2}{25} & \frac{4}{25} + \frac{1}{25} \end{bmatrix}$$

$$B \cdot B = \begin{bmatrix} 20/25 & -10/25 \\ -10/25 & 5/25 \end{bmatrix}$$

$$B \cdot B = B = \begin{bmatrix} 4/5 & -2/5 \\ -2/5 & 1/5 \end{bmatrix}$$

7. Trace of Matrix

If
$$A = (a_{ij})$$
 is a square matrix of order n , then the trace of A is:
 $tr(A) = \sum_{i=1}^{n} a_{ii} = a_{11} + a_{22} + a_{33} + \dots + a_{nn}$
 $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$; $Tr(A) = \sum_{i=1}^{3} a_{ii} = a_{11} + a_{22} + a_{33}$

- If A and B are two matrices of order n and let C_1 and C_2 be two Scalar, then: • $tr(C_1A + C_2B) = C_1tr(A) + C_2tr(B)$
- If A and B are two matrices of order n such that (AB) is defined a square • matrix, then: tr(AB) = tr(BA)
- Let A a square matrix of order n, and let C is non-singular matrix $(|C| \neq 0)$, then: $tr(C^{-1}AC) = tr(A)$ Proof:

$$tr(C^{-1}AC) = tr(AC^{-1}C) = tr(A)$$

 $tr(L^{-1}AC) = tr(AC^{-1}C) = tr(A)$ And if *C* is an Orthogonal matrix then

$$tr(C'AC) = tr(AC'C)$$

= $tr(AC^{-1}C)$
= $tr(AI) = tr(A)$

Example: Let $\underline{X} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$, show that $\left(\frac{XX'}{X'X}\right)^2$ is an Idempotent matrix **Solution:** $\underline{X} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, \underline{X}' = \begin{bmatrix} 1 & 2 & -1 \end{bmatrix}$

$$XX' = \begin{bmatrix} 1\\2\\-1 \end{bmatrix} \begin{bmatrix} 1 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & -1\\2 & 4 & -2\\-1 & -2 & 1 \end{bmatrix}$$
$$X'X = \begin{bmatrix} 1 & 2 & -1 \end{bmatrix} \begin{bmatrix} 1\\2\\-1 \end{bmatrix} = (1+4+1) = 6$$
$$\frac{XX'}{X'X} = \frac{\begin{bmatrix} 1 & 2 & -1\\2 & 4 & -2\\-1 & -2 & 1 \end{bmatrix}}{6} = \begin{bmatrix} \frac{1}{6} & \frac{1}{3} & \frac{-1}{6}\\\frac{1}{3} & \frac{2}{3} & \frac{-1}{3}\\\frac{-1}{6} & -\frac{1}{3} & \frac{1}{6} \end{bmatrix}$$
$$\left(\frac{XX'}{X'X}\right)^2 = \begin{bmatrix} \frac{1}{6} & \frac{1}{3} & \frac{-1}{6}\\\frac{1}{3} & \frac{2}{3} & \frac{-1}{3}\\\frac{-1}{6} & -\frac{1}{3} & \frac{1}{6} \end{bmatrix} \begin{bmatrix} \frac{1}{6} & \frac{1}{3} & \frac{-1}{6}\\\frac{1}{3} & \frac{2}{3} & -\frac{1}{3}\\\frac{-1}{6} & -\frac{1}{3} & \frac{1}{6} \end{bmatrix} = \begin{bmatrix} \frac{1}{6} & \frac{1}{3} & \frac{-1}{6}\\\frac{1}{3} & \frac{2}{3} & -\frac{1}{3}\\\frac{-1}{6} & -\frac{1}{3} & \frac{1}{6} \end{bmatrix} \stackrel{\circ}{\mapsto} \text{ is idempotent}$$

HW1

Q1/ If
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$
 where A_{11} and A_{22} are non-singular matrix $(|A_{11}| \neq 0, |A_{22}| \neq 0)$,
find a matrix $C = \begin{bmatrix} I & 0 \\ C_{21} & I \end{bmatrix}$ such that $CA = \begin{bmatrix} A_{11} & A_{12} \\ 0 & B \end{bmatrix}$
Use the Result to show that $|A| = |A_{11}| |A_{22} - A_{21}(A_{11})^{-1}A_{12}|$
Q2/ Find Determinant, Inverse, Eigenvalues and eigenvectors of the following:

$$A = \begin{bmatrix} 7 & 6 \\ 6 & 2 \end{bmatrix}, B = \begin{bmatrix} 2 & 2 & 4 \\ 2 & -1 & 2 \\ 4 & 2 & 2 \end{bmatrix},$$

Q3/ Find value of K for the following matrix:

$$A = \begin{bmatrix} 1 & -2 & k \\ k & 2 & 0 \\ 2 & 3 & 1 \end{bmatrix}$$