CHAPTER TWO

Electrostatic

Electrostatic field:

In this chapter we shall restrict our attention to static electric fields in vacuum or free space. Such fields, for example, are found in the focusing and deflection systems of electrostatic cathode-ray tubes. For all practical purposes, our results will also be applicable to air and other gases.

Coulombs Law:

Coulomb stated that the force between two very small Objects separated in a vacuum or free space by a distance which is large compared to their size is proportional to the charge on each and inversely proportional to the square of the distance between them, or

$$
F_{a b}=k \frac{q_{a} q_{b}}{r^{2}} \hat{r}
$$

q_{a} and q_{b} are two piont charges,$\quad k=9 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{c}^{2}}$ $\epsilon=$ permitivity of free space $=8.8542 \times 10^{-12} \frac{\mathrm{~F}}{\mathrm{~m}}$

The coulombs force in nature is very enormous comparing with gravitational force. The force between two electrons:
$1-F_{E}=k \frac{q_{1} q_{2}}{r^{2}} \hat{r}=9 \times 10^{9} \frac{\left(1.6 \times 10^{-19}\right)^{2}}{1}$
$2-F_{G}=G \frac{m_{1} m_{2}}{r^{2}} \hat{r}=6.6 \times 10^{-11} \frac{\left(9.1 \times 10^{-31}\right)^{2}}{1}, \quad G=6.6 \times 10^{-11} \frac{\mathrm{~N} . \mathrm{m}}{\mathrm{kg}^{2}}$
$\frac{F_{E}}{F_{G}}=\frac{23.04 \times 10^{-29}}{552.34 \times 10^{-73}}=0.0417 \times 10^{44} \mathrm{~N}$
$\therefore F_{G} \ll F_{E}$

Electric field intensity (E):

(E) is the force per unit charge exerted on a test charge.

$$
\begin{gathered}
F_{a b}=k \frac{q_{a} q_{b}}{r^{2}} \hat{r}=\frac{q_{a} q_{b}}{4 \pi \varepsilon_{0} r^{2}} \hat{r} \\
\therefore E_{a}=\frac{F_{a b}}{q_{b}}=\frac{q_{a}}{4 \pi \varepsilon_{0} r^{2}} \hat{r}
\end{gathered}
$$

The electric field intensity is the same when ther q_{a} is present or not.

$$
\left[E=\frac{q_{a}}{4 \pi \varepsilon_{0} r^{2}} \hat{r}\right]
$$

$E=\frac{q(x \hat{\imath}+y \hat{\jmath}+z \hat{k})}{4 \pi \varepsilon_{0}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}$ at the Origen point
$E=\frac{q_{a}}{4 \pi \varepsilon_{0}|r-\grave{r}|^{2}}(r-\grave{r})$ at any point
$E=\frac{q((x-\grave{x}) \hat{\imath}+(y-\grave{y}) \hat{\jmath}+(z-\grave{z}) \hat{k})}{4 \pi \varepsilon_{0}\left[(x-\grave{x})^{2}+(y-\grave{y})^{2}+(z-\grave{z})^{2}\right]^{\frac{3}{2}}}$

Field of n-point charge:

$$
\begin{aligned}
& E=\frac{q_{1}}{4 \pi \varepsilon_{0}\left|r-\grave{r}_{1}\right|^{2}} a_{1}+\frac{q_{2}}{4 \pi \varepsilon_{0}\left|r-\grave{r}_{2}\right|^{2}} a_{2}+\frac{q_{3}}{4 \pi \varepsilon_{0}\left|r-\grave{r}_{3}\right|^{2}} a_{3} \ldots \ldots \ldots \\
& \quad+\frac{q_{n}}{4 \pi \varepsilon_{0}\left|r-\grave{r}_{n}\right|^{2}} a_{n} \\
& E=\sum_{m=1}^{n} \frac{q_{m}}{4 \pi \varepsilon_{0}\left|r-{r_{m}}^{2}\right|^{2}} a_{m}
\end{aligned}
$$

Problem:
1- Two point charge $q_{1}=50 \mu c, q_{2}=10 \mu c$ are lactated at $(-1,1,-3) \mathrm{m}$, and $(3,1,0) \mathrm{m}$, respectively. Find the Force on q_{1}.
2- Find the electric field (E) at $P(-4,6,-5)$ in the free space caused by a charge a- At the Origen.
b- At $(2,-1,3)$.
3- Point charge $q_{1}=2 \mu c$ is locted at $p_{1}(-3,7,-4)$ in free space while $q_{2}=-5 \mu c$ is locted at $\mathrm{p}_{2}(2,4,-1)$.
At the point $(12,12,15)$ find $\mathrm{E},|E|, a_{E}$ (unit vector)

Charge Distribution:

1- L in charge distribution:

$$
\begin{aligned}
& \quad \rho_{l}=\frac{q}{l} \equiv \text { Line charge distribution } \\
& \\
& d q=\rho_{l} d l \\
& E=\frac{q}{4 \pi \varepsilon_{0} r^{2}} \hat{r} \\
& =\int \frac{\rho_{l} d l}{4 \pi \varepsilon_{0} r^{2}} \hat{r}
\end{aligned}
$$

2- sheet charge distribution:

$$
\begin{aligned}
& \rho_{s}=\frac{q}{s} \equiv \text { Sheet charge distribution } \\
& d q=\rho_{s} d s \\
& E=\int \frac{\rho_{s} d s}{4 \pi \varepsilon_{0} r^{2}} \hat{r}
\end{aligned}
$$

3- Volume charge distribution:

Standard charge distribution

1- Electric field intensity due to line charge, $E=$?. $\left(E=\frac{p_{l}}{2 \pi \epsilon_{0} r} a_{r}\right)$
2- Electric field intensity due to infinite plane sheet charge,

$$
E=? .\left(E=\frac{p_{s}}{2 \varepsilon_{0}} a_{n}\right)
$$

3- Electric field intensity due to a point charge, $E=$?. $E=\frac{p}{4 \pi \epsilon_{0} r^{2}} a_{r}$

Example:

Find the force on a point charge of $50 \mu \mathrm{c}$ at $(0,0,5)$ due to a charge of $500 \pi \mu \mathrm{c}$, which uniformly distributed over the circular disk $(r \leq 5 \quad \varphi=2 \pi \quad z=0)$.

Sol/

$$
\begin{gathered}
F=E q \\
E=\int \frac{\rho_{s} d s}{4 \pi \varepsilon_{0} R^{2}} a_{R}
\end{gathered}
$$

$F=q E=q \int \frac{\rho_{s} d s}{4 \pi \varepsilon_{0} R^{2}} a_{R} \quad, \quad \rho_{s}=\frac{q}{s}=\frac{500 \pi 10^{-6}}{\pi r^{2}}=\frac{500 \pi 10^{-6}}{\pi 25}=20 \times 10^{-6}$
$R=-r_{a_{r}}+z_{a_{z}}, \quad d l=d r a_{r}+r d \varphi a_{\varphi}+d z a_{z}, \quad d s=(r d r d \varphi) a_{z}$
$F=q \int \frac{\rho_{s} r d r d \varphi}{4 \pi \varepsilon_{0} R^{2}} a_{R}=q \int \frac{\rho_{s} r d r d \varphi a_{z}}{4 \pi \varepsilon_{0}\left(r^{2}+25\right)} \cdot \frac{\left(-r_{a_{r}}+5_{a_{z}}\right)}{\sqrt{r^{2}+25}}$
$=\frac{5 q \rho_{s}}{4 \pi \varepsilon_{0}} \int_{0}^{5} \frac{r d r}{\left(r^{2}+25\right)^{\frac{3}{2}}} \int_{0}^{2 \pi} d \varphi$
$=\left.\frac{5 .\left(50 \times 10^{-6}\right)\left(20 \times 10^{-6}\right)}{4 \pi\left(\frac{10^{-9}}{36 \pi}\right)} \cdot \frac{1}{2} \cdot \frac{1}{\sqrt{r^{2}+25}}\right|_{0} ^{5} \cdot 2 \pi=16.56 \mathrm{~N}$
$\mathrm{Q} /$ Find E at $(0,0,5) \mathrm{m}$ due to $\mathrm{Q} 1=0.35 \mu \mathrm{c}$ at $(0,4,0) \mathrm{m}$ and $\mathrm{Q} 2=0,55 \mu \mathrm{c}$ at $(3,0,0) \mathrm{m}$

The Electric Potential:

$$
w=-\int_{p_{1}}^{p_{2}} F \cdot d l
$$

The work required to move a point charge q from p_{1} to p_{2} at a constant speed in an electric field.

$$
w=-\int_{p_{1}}^{p_{2}} E q \cdot d l \text { if the path closed } w=-\oint_{p_{1}}^{p_{2}} E q \cdot d l=-q \oint_{p_{1}}^{p_{2}} E \cdot d l=0
$$

\therefore The same over the closed path $=0$

$$
\therefore \oint E d l=0 \quad E=\text { conservative }
$$

The conservative field is 1 -a function of position only 2 - have a fixed value
Using stokes theorem $\quad \oint E d l=\int_{S}(\nabla \times E) \cdot n d a$

$$
\begin{gathered}
\therefore \int_{s}(\nabla \times E) \cdot n d a=0 \quad \text { if } E=-\nabla V \quad p_{2}<p_{1} \\
\nabla \times \nabla \mathrm{V}=0
\end{gathered}
$$

The $(-)$ sing is required in order that or point toward a decrease in potential.

$$
E=-\nabla V=-\left(\frac{\partial V}{\partial x} \hat{\imath}+\frac{\partial V}{\partial y} \hat{\jmath}+\frac{\partial V}{\partial z} \hat{k}\right)
$$

$E d l=-\left(\frac{\partial V}{\partial x} \hat{\imath}+\frac{\partial V}{\partial y} \hat{\jmath}+\frac{\partial V}{\partial z} \hat{k}\right) \cdot(\hat{\imath} d x+\hat{\jmath} d y+\hat{k} d z)=-d V$
$d V=-E \cdot d l$
$v_{12}=-\int_{r_{1}}^{r_{2}} d V=-\int_{r_{1}}^{r_{2}} E \cdot d l=-\int \frac{q}{4 \pi \varepsilon_{0} r^{2}} d r=-\frac{q}{4 \pi \varepsilon_{0}} \int_{r_{1}}^{r_{2}} \frac{d r}{r^{2}}$
$V_{1,2}$ - potential defirence

$$
V_{1,2}=V_{2}-V_{1}
$$

Is the work done in moving a charge q from one point to another
The potential is the work done per unit charge.

$$
w=-\int E q \cdot d l \quad V_{1,2}=-\int_{r_{1}}^{r_{2}} E \cdot d l
$$

If r_{1} is at infinity

$$
V_{1,2}=-\int_{\infty}^{r_{2}} d V=-\int_{\infty}^{r_{2}} E \cdot d l
$$

$$
V_{1,2}=V_{1}-V_{2}=\frac{q}{4 \pi \varepsilon_{0}(\infty)^{2}}-\frac{q}{4 \pi \varepsilon_{0}\left(r_{2}\right)^{2}}, \quad V_{1}=0, \quad V_{2}=-\int_{\infty}^{r_{2}} E \cdot d l
$$

in general $\quad V=-\int_{\infty}^{r} E \cdot d l$

The potential:

Is the work required to bring a charge from infinity to a point considered in the electric field. Or potential is the work done per unit charge.

$$
\begin{gathered}
V=\frac{w}{q} \\
V=-\int_{\infty}^{r} E \cdot d l \quad \therefore V=-\int_{\infty}^{r} \frac{q}{4 \pi \varepsilon_{0} r^{2}} a_{r} \cdot d r a_{r}=-\frac{q}{4 \pi \varepsilon_{0}} \int_{\infty}^{r} \frac{d r}{r^{2}} \\
V=-\frac{q}{4 \pi \varepsilon_{0}}\left[\frac{1}{r}\right]_{\infty}^{r} \\
=-\frac{q}{4 \pi \varepsilon_{0}} \frac{1}{r} \quad \text { potential due to a point charge at a distance }(r)
\end{gathered}
$$

Example:

Find the work done in carrying the charge from r_{1} to r_{2} along a radial path due to infinite line charge.

$$
w=-\int E q \cdot d l=-q \int \frac{\rho_{l}}{2 \pi \varepsilon_{0} r} a_{r} \cdot d r a_{r}=-\frac{q \rho_{l}}{2 \pi \varepsilon_{0}} \int_{r_{1}}^{r_{2}} \frac{d r}{r}=-\frac{q \rho_{l}}{2 \pi \varepsilon_{0}} \ln \frac{r_{2}}{r_{1}}
$$

$Q \backslash$ Find the work done in carrying the charge (q) from r_{1} to r_{2} along a radial path due to a point charge.

Example: Find the work done in moving a point charge $\mathrm{q}=5 \mu \mathrm{c}$ from the origin to $\left(2, \frac{\pi}{4}, \frac{\pi}{2}\right)$ in the field $\left(E=5 e^{-\frac{r}{4}} a_{r}+\frac{10}{\operatorname{rsin} \theta} a_{\varphi}\right)$.

Soll

$$
\begin{gathered}
w=-q \int_{r_{1}}^{r_{2}} E d l=-q \int_{r_{1}}^{r_{2}}\left(5 e^{-\frac{r}{4}} a_{r}+\frac{10}{\operatorname{rsin} \theta} a_{\varphi}\right) \cdot\left(d r a_{r}+r d \theta a_{\theta}+r \sin \theta d \varphi a_{\varphi}\right) \\
\begin{array}{c}
w=-5 \times 10^{-6}\left[\int_{0}^{2} 5 e^{-\frac{r}{4}} d r+\int_{0}^{\frac{\pi}{2}} 10 d \varphi a_{\varphi}\right]=-5 \times 10^{-6}\left[20\left(e^{\frac{-2}{4}}-1\right)+5 \pi\right] \\
=117.9 \times 10^{-6} \mathrm{~J} \\
V_{12}=\frac{w}{q}=\frac{117.9 \times 10^{-6} \mathrm{~J}}{5 \times 10^{-6}}=2.358 \text { volt. }
\end{array} .
\end{gathered}
$$

Electric Flux and Gausses Law:

Electric flux (ψ) :is the number of electrical lines.
1- Columbus of electrical charge gives rise.
2- Columbus of electric flux, flux $(\psi)=\varphi_{\text {charge }}$

Electrical flux density (D): Is the number of lines per unit area
$D=\frac{d \vec{\psi}}{d \vec{s}}$
$d \psi=\vec{D} \cdot d s \Rightarrow d \psi=D \mathrm{~s} \cos \theta$
D: Is the vector take its direction from the line of flux.

Gauss's Law:

The electric flux passing through any closed surface is equal to the total charge enclosed by that surface.

$$
\begin{gathered}
d \psi=D \cdot d s \quad \oint d \psi=\oint D \cdot d s \\
\varphi_{e n c}=\oint D \cdot d s
\end{gathered}
$$

The electric flux density D_{S} At P due to
Charge Q. The total flux passing through ΔS is $\Delta D_{S} \cdot \Delta S$.

The ratio between flux density and electric field intensity

Relation between D and E :

$D \cdot d s=\varphi_{e n c} \quad \rightarrow \quad \int D \cdot d s a_{r}=\varphi_{e n c} \quad \rightarrow \quad D r^{2} \int_{0}^{\pi} \sin \theta d \theta \int_{0}^{2 \pi} d \varphi=\varphi_{e n c}$
$D 4 \pi r^{2}=\varphi_{e n c} \quad \rightarrow \quad D=\frac{\varphi_{e n c}}{4 \pi r^{2}} a_{r}$
For appoint charge:
$E=\frac{\varphi_{e n c}}{4 \pi r^{2} \varepsilon_{0}} a_{r} \quad, \frac{D}{E}=\varepsilon_{0}$

$$
\begin{gathered}
D=\varepsilon_{0} E-\text { in free space } \quad \begin{array}{c}
D=\varepsilon E-\text { in homogenous iso topic medium } \\
\varepsilon=\varepsilon_{r} \varepsilon_{0}
\end{array}
\end{gathered}
$$

$$
\begin{aligned}
& \varepsilon_{r} \equiv \text { Dielectric constant } \\
& \varepsilon_{0}=\text { permitivity of free space } \\
& \varepsilon=\text { permitivity of the medium }
\end{aligned}
$$

Example: Find D of a uniform finite line charge.
Sol/
The appropriate Gauss surface for a line as a clyndrical
$\int D \cdot d s=\varphi_{e n c}$
$\int D a_{r} \cdot d s a_{z}+\int D a_{r} \cdot d s a_{r}+\int D a_{r} \cdot d s\left(-a_{z}\right)=\varphi_{e n c}$
$\operatorname{Dr} \int_{0}^{2 \pi} d \varphi \int_{0}^{l} d z=\varphi_{e n c}$
$\therefore D=\frac{\varphi_{e n c}}{2 \pi r l}$

Q/ Find D and E due to a uniform finite plane charge.
Sol./
$\int D \cdot d s=\varphi=D \cdot r d r d \varphi=D \int_{0}^{r} r d r \int_{0}^{2 \pi} d \varphi=D \frac{r^{2}}{2} 2 \pi=D \pi r^{2}$
$D=\frac{\varphi}{\pi r^{2}}$
$D=\varepsilon_{0} E \quad \rightarrow \quad E=\frac{D}{\varepsilon_{0}} \quad \therefore E=\frac{\varphi}{\pi r^{2} \varepsilon_{0}}$

Maxwell's First equation:

$$
\begin{gathered}
\int D \cdot d s=\varphi_{e n c}=\int \rho_{v} d v \quad \ldots \ldots \ldots \ldots \ldots . \text { Gauss Law } \\
\oint D \cdot d s=\int(\nabla \cdot D) d v \quad \ldots \ldots \ldots . \quad \text { Divergence theorm } \\
\int_{v}(\nabla \cdot D) d v=\int_{v} \rho_{v} d v
\end{gathered}
$$

$[\nabla \cdot D=\rho]$ The point form of Gauss's Law or Maxwell 1st equation

$$
D=\varepsilon_{0} E \quad \ldots \ldots \ldots \ldots \quad \text { in free space }
$$

$D=\varepsilon E \quad \ldots \ldots \ldots$ in other medium

$$
\begin{aligned}
& \nabla \cdot E=\frac{\rho}{\varepsilon_{0}} \\
& \text {.. in free space } \\
& \nabla \cdot E=\frac{\rho}{\varepsilon} \quad \ldots \ldots \ldots \text { in isotropic homogenoas medium }
\end{aligned}
$$

Q1 \backslash Given the field $\left(D=(2 x+1) y^{2} a_{x}+2 x(x+1) y a_{y}\right) \frac{c}{m^{2}}$ compute the total flux crossing the surface defined by:
a) $x=0$
$-2 \leq y \leq 2$
$-2 \leq z \leq 2$
b) $y=2$
$-5 \leq x \leq 5$
$-2 \leq z \leq 2$

Q2\ The cylindrical surfaces ($\mathrm{r}=3,4$ and 5) m contain a uniform charge density of (8, -12 , and $\left.\rho_{s} x\right) \frac{n c}{m^{2}}$ respectively.
a) At what volume must $\rho_{s} x$ be so that $\mathrm{D}=0$ for $\mathrm{r}>5$?
b) If ($\rho_{s} x=2 \frac{n c}{m^{2}}$) calculate and plot D_{r} versus r for $0 \leq r \leq 6 m$

Q3\ The spherical surfaces ($\mathrm{r}=3,4$ and 5)m contain a uniform charge density of (8, 12 , and $\left.\rho_{s} x\right) \frac{n c}{m^{2}}$ respectively.
a) At what volume must $\rho_{s} x$ be so that $\mathrm{D}=0$ for $\mathrm{r}>5$?
b) If ($\rho_{s} x=2 \frac{n c}{m^{2}}$) calculate and plot D_{r} versus r for $0 \leq r \leq 6 \mathrm{~m}$

Hint:
$\int D \cdot d s=\varphi_{e n c}=\varphi_{1}+\varphi_{2}+\varphi_{3}=\rho_{s_{1}} d s+\rho_{s_{2}} d s+\rho_{s_{3}} d s=0$

Energy Density in Electrostatic Field

The work required to bring point charge from infinity to point considered in Field (E).

$$
\begin{gathered}
W=-\int_{\infty}^{r} E q \cdot d l=q\left[\int_{\infty}^{r} E \cdot d l\right] \\
W=q V
\end{gathered}
$$

Consider the work required to assemble charge by charge a distribution of $n=3$ point charges

$$
W=0+q_{2} V_{2,1}+\left(q_{3} V_{3,1}+q_{3} V_{3,2}\right) \ldots \ldots \ldots \ldots \ldots 1
$$

If there charge brought in to place reverse order

$$
\begin{gathered}
W=0+q_{2} V_{2,3}+\left(q_{1} V_{1,3}+q_{1} V_{1,2}\right) \ldots \ldots \ldots \ldots .2 \\
2 W=q_{1}\left(V_{1,3}+V_{1,2}\right)+q_{2}\left(V_{2,1}+V_{2,3}\right)+q_{3}\left(V_{3,1}+V_{3,2}\right) \\
2 W=q_{1} V_{1}+q_{2} V_{2}+q_{3} V_{3} \\
W=\frac{1}{2}\left(q_{1} V_{1}+q_{2} V_{2}+q_{3} V_{3}\right)
\end{gathered}
$$

For n-point charge:

$$
\begin{gathered}
W=\frac{1}{2}\left(q_{1} V_{1}+q_{2} V_{2}+\ldots \ldots+q_{n} V_{n}\right) \\
W=\frac{1}{2} \sum_{m=1}^{n} q_{m} V_{m} \equiv \text { for } n-\text { point charges or for discrete charge }
\end{gathered}
$$

For continuous charge distribution:

$$
\begin{gathered}
W=\frac{1}{2} \int_{v} \rho_{v} V d v \rightarrow \text { for continuous charge distribution. } \rho=(\nabla \cdot \mathrm{D}) \\
\qquad\left[W=\frac{1}{2} \int_{v}(\nabla \cdot \mathrm{D}) V d v\right] \\
\binom{\nabla \cdot(V D)=(\nabla \cdot D) V+D(\nabla \cdot V)}{(\nabla \cdot D) V=\nabla \cdot(V D)-D(\nabla \cdot V)}\left(\oint_{S} A \cdot d s=\int_{v}(\nabla \cdot A) d V \text { divergence theorem }\right)
\end{gathered}
$$

$$
\begin{gathered}
W=\frac{1}{2} \int[\nabla \cdot(V D)-D(\nabla \cdot V)] d v=\frac{1}{2} \oint(V D) d s-\frac{1}{2} \int D(\nabla \cdot V) d v \\
W=-\frac{1}{2} \int D(-E) d v \quad \text { wher }\left(E=-\nabla V \text { and } D=\varepsilon_{0} E\right)
\end{gathered}
$$

$$
W=\frac{1}{2} \int \varepsilon_{0} E^{2} d v \quad \text { is the energy stored in the electrostatic field }
$$

Example: Find the energy stored in the electrostatic field of a section of a coaxial cable.

Sol. \backslash

$D=\frac{\rho_{s} a}{r} \quad \therefore E=\frac{\rho_{s} a}{\varepsilon r} a_{r} \quad$ where $\varepsilon=\varepsilon_{0} \varepsilon_{r} \quad$ then:
$W=\frac{1}{2} \varepsilon_{0} \int E^{2} d v=\frac{1}{2} \int \varepsilon_{0}\left(\frac{\rho_{s} a}{\varepsilon r}\right)^{2} r d r d \varphi d z=\frac{1}{2} \frac{\rho_{s}^{2} a^{2}}{\varepsilon_{0} \varepsilon_{r}^{2} r} \int_{a}^{b} \frac{d r}{r} \int_{0}^{2 \pi} d \varphi \int_{0}^{l} d z$
$W=\frac{\rho_{s}{ }^{2} a^{2}}{2 \varepsilon_{0} \varepsilon_{r}^{2} r} \cdot \ln \frac{b}{a} \cdot 2 \pi \cdot l \quad \rightarrow \quad W=\frac{\pi \rho_{s}{ }^{2} a^{2} l}{\varepsilon_{0} \varepsilon_{r}^{2} r} \cdot \ln \frac{b}{a}$ energy store
The energy stored per unit volume is :
$u=\frac{W}{V}=\frac{\frac{\pi \rho_{s}{ }^{2} a^{2} l}{\varepsilon_{0} \varepsilon_{r}^{2} r} \cdot \ln \frac{b}{a}}{\left(\pi b^{2} l-\pi a^{2} l\right)}$
wher $\left(\begin{array}{cc}\text { inner vol. } & \text { outer.vol. } \\ \pi a^{2} l & \pi b^{2} l\end{array}\right)$
$u=\frac{\rho_{s}{ }^{2} a^{2}}{\varepsilon_{0} \varepsilon_{r}^{2} r\left(b^{2}-a^{2}\right)} \cdot \ln \frac{b}{a}$

Q1 Find the energy stored in a parallel plate capacitor.
Sol\}
wher $\mathrm{E}=\mathrm{V} \backslash \mathrm{d}$ for capacitor then:
$W=\frac{1}{2} \int \varepsilon_{0} E^{2} d v$
$W=\frac{1}{2} \int \varepsilon_{0}\left(\frac{V}{d}\right)^{2} d x d y d z$
$W=\frac{1}{2}\left[\varepsilon_{0}\left(\frac{V}{d}\right)^{2} A d\right]$
$W=\frac{1}{2} \varepsilon_{0} \frac{V^{2} A}{d}$

Q2\Given $E=-5 e^{-\frac{r}{a}} a_{r}$ in cylindrical coordinate. Find energy stored in the volume described by $r \leq 2 a, 0 \leq z \leq 5 a$.

Q3\ Find the energy stored in a system of three equal point charges of (2nc) arranged in a line with 0.5 cm separation between them.

