Problem 1: A group of students measures the length of a pencil and gets the following results: $10.2 \mathrm{~cm}, 10.3 \mathrm{~cm}, 10.4 \mathrm{~cm}, 10.3 \mathrm{~cm}, 10.2 \mathrm{~cm}$. Calculate the average length of the pencil and determine its accuracy and precision.

Solution: The average length of the pencil can be calculated by adding up all the measurements and dividing by the number of measurements:
$(10.2 \mathrm{~cm}+10.3 \mathrm{~cm}+10.4 \mathrm{~cm}+10.3 \mathrm{~cm}+10.2 \mathrm{~cm}) / 5=10.28 \mathrm{~cm}$
The accuracy of the measurements can be determined by comparing the average length to the true length of the pencil (which we don't know in this case). If the average length is close to the true length, the measurements are accurate; if it's far away, the measurements are inaccurate.

The precision of the measurements can be determined by looking at how closely the individual measurements cluster around the average. One way to do this is to calculate the standard deviation:
$s=\operatorname{sqrt}\left((1 /(n-1))^{*}\left((10.2-10.28)^{\wedge} 2+(10.3-10.28)^{\wedge} 2+(10.4-10.28)^{\wedge} 2+(10.3-\right.\right.$ $\left.\left.10.28)^{\wedge} 2+(10.2-10.28)^{\wedge} 2\right)\right)$
$\mathrm{s} \approx 0.086 \mathrm{~cm}$

A smaller standard deviation indicates greater precision, so these measurements are fairly precise.
roblem 2: A chemist measures the melting point of a sample of a substance and gets the following results: $122.3^{\circ} \mathrm{C}, 123.1^{\circ} \mathrm{C}, 121.9^{\circ} \mathrm{C}, 122.7^{\circ} \mathrm{C}, 123.4^{\circ} \mathrm{C}$. Calculate the average melting point of the substance and determine its accuracy and precision.

Solution: The average melting point can be calculated as before:
$\left(122.3^{\circ} \mathrm{C}+123.1^{\circ} \mathrm{C}+121.9^{\circ} \mathrm{C}+122.7^{\circ} \mathrm{C}+123.4^{\circ} \mathrm{C}\right) / 5=122.86^{\circ} \mathrm{C}$

To determine the accuracy of the measurements, we need to compare the average melting point to the true melting point of the substance (which we don't know). If the
average is close to the true value, the measurements are accurate; if it's far away, the measurements are inaccurate.

To determine the precision of the measurements, we can again calculate the standard deviation:
$s=\operatorname{sqrt}\left((1 /(n-1))^{*}\left((122.3-122.86)^{\wedge} 2+(123.1-122.86)^{\wedge} 2+(121.9-122.86)^{\wedge} 2+\right.\right.$ $\left.\left.(122.7-122.86)^{\wedge} 2+(123.4-122.86)^{\wedge} 2\right)\right)$
$s \approx 0.598^{\circ} \mathrm{C}$
These measurements have a larger standard deviation than in the previous example, indicating lower precision.

Problem 1: A construction worker needs to measure the length of a piece of wood to cut it to the right size. The true length of the wood is 2.5 meters. The worker measures the length four times and gets the following results: $2.45 \mathrm{~m}, 2.51 \mathrm{~m}, 2.48 \mathrm{~m}$, and 2.52 m . Calculate the accuracy of the measurements.

Solution: To calculate the accuracy of the measurements, we need to compare the average of the measurements to the true length of the wood. The average length can be calculated as follows:
$(2.45 m+2.51 m+2.48 m+2.52 m) / 4=2.49 m$
The accuracy can be calculated as follows:
Accuracy $=$ (Measured value - True value) $/$ True value x 100%
Accuracy $=(2.49 m-2.5 m) / 2.5 m \times 100 \%=-0.4 \%$
The accuracy is -0.4%, which means that the measurements are very close to the true value.

Problem 2: A researcher is conducting an experiment to determine the weight of a sample of a substance. The true weight of the sample is 10.0 grams. The researcher measures the weight ten times and gets the following results: $9.8 \mathrm{~g}, 10.1 \mathrm{~g}, 9.9 \mathrm{~g}, 10.0 \mathrm{~g}$,
$10.2 \mathrm{~g}, 9.8 \mathrm{~g}, 10.0 \mathrm{~g}, 10.1 \mathrm{~g}, 9.9 \mathrm{~g}$, and 10.1 g . Calculate the accuracy of the measurements.

Solution: To calculate the accuracy of the measurements, we need to compare the average of the measurements to the true weight of the sample. The average weight can be calculated as follows:
$(9.8 g+10.1 g+9.9 g+10.0 g+10.2 g+9.8 g+10.0 g+10.1 g+9.9 g+10.1 g) / 10$ $=10.0 \mathrm{~g}$

The accuracy can be calculated as follows:

Accuracy $=$ (Measured value - True value) $/$ True value $\times 100 \%$

Accuracy $=(10.0 \mathrm{~g}-10.0 \mathrm{~g}) / 10.0 \mathrm{~g} \times 100 \%=0 \%$

The accuracy is 0%, which means that the measurements are exactly equal to the true value. This indicates that the measurements are very accurate.

Problem 1: A chemist needs to determine the concentration of a solution of hydrochloric acid (HCl). The true concentration of the solution is 0.100 M . The chemist analyzes the solution three times and gets the following results: $0.098 \mathrm{M}, 0.099 \mathrm{M}$, and 0.100 M . Calculate the accuracy of the measurements.

Solution: To calculate the accuracy of the measurements, we need to compare the average of the measurements to the true concentration of the solution. The average concentration can be calculated as follows:
$(0.098 \mathrm{M}+0.099 \mathrm{M}+0.100 \mathrm{M}) / 3=0.099 \mathrm{M}$
The accuracy can be calculated as follows:

Accuracy $=($ Measured value - True value $) /$ True value $\times 100 \%$
Accuracy $=(0.099 \mathrm{M}-0.100 \mathrm{M}) / 0.100 \mathrm{M} \times 100 \%=-1.0 \%$

The accuracy is -1.0%, which means that the measurements are very close to the true value.

Problem 2: A lab technician needs to determine the purity of a sample of aspirin (acetylsalicylic acid). The true purity of the sample is 98%. The technician analyzes the sample four times and gets the following results: $97 \%, 98 \%, 99 \%$, and 97%. Calculate the accuracy of the measurements.

Solution: To calculate the accuracy of the measurements, we need to compare the average of the measurements to the true purity of the sample. The average purity can be calculated as follows:
$(97 \%+98 \%+99 \%+97 \%) / 4=97.75 \%$

The accuracy can be calculated as follows:
Accuracy $=($ Measured value - True value) $/$ True value $\times 100 \%$

Accuracy $=(97.75 \%-98 \%) / 98 \% \times 100 \%=-0.26 \%$

The accuracy is -0.26%, which means that the measurements are very close to the true value.

Problem 1: A scientist is using a UV-Vis spectrophotometer to determine the concentration of a protein in a solution. The scientist prepares a series of standard solutions with known concentrations of the protein, and measures their absorbance at 280 nm . The data is shown in the table below. Create a calibration curve and use it to determine the concentration of the protein in an unknown sample that has an absorbance of 0.625 at 280 nm .

	Concentration $(\mathbf{m g} / \mathrm{mL})$	
0.5	0.237	

\square

Solution: To create a calibration curve, we plot the absorbance values of the standard solutions on the y-axis and their known concentrations on the x-axis. The resulting graph is a straight line, which can be fitted with a linear regression equation of the form $y=m x+b$, where y is the absorbance, x is the concentration, m is the slope, and b is the y-intercept.

We can calculate the slope and y-intercept using the data from the table:

First, we calculate the slope:
$m=(y 2-y 1) /(x 2-x 1) m=(1.174-0.237) /(2.5-0.5) m=0.554$

Next, we calculate the y-intercept:
$b=y 1-m x 1 b=0.237-(0.554)(0.5) b=0.013$

Therefore, the linear regression equation for the calibration curve is:
$y=0.554 x+0.013$

Now we can use this equation to determine the concentration of the unknown sample that has an absorbance of 0.625 at 280 nm . We rearrange the equation to solve for x :
$x=(y-b) / m x=(0.625-0.013) / 0.554 x=1.123 \mathrm{mg} / \mathrm{mL}$
Therefore, the concentration of the protein in the unknown sample is $1.123 \mathrm{mg} / \mathrm{mL}$.
roblem 2: A researcher is using a gas chromatograph to determine the concentration of a mixture of two compounds, A and B, in a sample. The researcher prepares a series of standard solutions with known concentrations of A and B, and measures their peak areas on the chromatogram. The data is shown in the table below. Create a calibration curve for each compound and use them to determine the concentration of A and B in the sample.

Concentration of A $(\mathbf{m g} / \mathrm{mL})$	
	Peak area of A
0.5	3123
1.0	6246
1.5	9386
2.0	12495

		Peak area of A
2.5	15620	
		Peak area of B
0.5	1565	
1.0	3143	
1.5	4688	
2.0	6262	
2.5	7845	

Solution: To create a calibration curve for each compound, we plot the

Problem 1: A scientist is analyzing the concentration of glucose in a series of samples using a spectrophotometer. The scientist prepares a series of glucose solutions with known concentrations and measures their absorbance at a wavelength of 500 nm . The following data is obtained:

Concentration (M) Absorbance		
0.000	0.000	
0.100	0.200	
0.200	0.400	
0.300		
0.400	0.600	
0.500		1.000

Construct a calibration curve and use it to determine the concentration of an unknown glucose sample with an absorbance of 0.650 .

Solution: To construct a calibration curve, we need to plot the absorbance values against the known concentrations of glucose. The resulting graph
should be linear, and the slope of the line should represent the molar absorptivity of glucose at 500 nm .

Plotting the data, we get the following calibration curve:

The equation for the line is $\mathrm{y}=2.000 \mathrm{x}$, where y is the absorbance and x is the concentration in moles per liter (M). The molar absorptivity of glucose at 500 nm is therefore $2.000 \mathrm{M}^{\wedge}-1 \mathrm{~cm}^{\wedge}-1$.

To determine the concentration of the unknown glucose sample with an absorbance of 0.650 , we can use the equation for the line:
$y=2.000 x$
$0.650=2.000 x$
$x=0.325 \mathrm{M}$

Therefore, the concentration of the unknown glucose sample is 0.325 M .
Problem 2: A chemist is analyzing the concentration of a dye in a series of samples using a colorimeter. The chemist prepares a series of dye solutions with known concentrations and measures their absorbance at a wavelength of 450 nm . The following data is obtained:

Concentration (ppm)	Absorbance
0.00	0.000

Concentration (ppm)	Absorbance	
5.00	0.200	
10.00	0.400	
15.00	0.600	
20.00	0.800	
25.00	1.000	

Construct a calibration curve and use it to determine the concentration of an unknown dye sample with an absorbance of 0.650 .

Solution: To construct a calibration curve, we need to plot the absorbance values against the known concentrations of the dye. The resulting graph should be linear, and the slope of the line should represent the molar absorptivity of the dye at 450 nm .

Plotting the data, we get the following calibration curve:

The equation for the line is $\mathrm{y}=0.050 \mathrm{x}$, where y is the absorbance and x is the concentration in parts per million (ppm). The molar absorptivity of the dye at 450 nm is therefore $0.050 \mathrm{ppm}^{\wedge}-1 \mathrm{~cm}^{\wedge}-1$.

To determine the concentration of the unknown dye sample with an absorbance of 0.650, we can use the equation for the line:
$y=0.050 x$
$0.650=0$.

