19. Examinations:
1) Organic sample weighed 0.185 g was ignited in an excess of oxygen, then all carbon dioxide were collected in barium hydroxide solution. Calculate the percentage of carbon in the sample, if you know that the precipitate formed (barium carbonate) weighed 0.526 gm . What the name of this type of gravimetric analysis?

Typical Answer for 1):
Volatilization Method
$\mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{CO}_{2} \rightarrow \mathrm{BaCO}_{3}+\mathrm{H}_{2} \mathrm{O}$
Wt. of $\mathrm{C}=\mathrm{Wt}$. of $\mathrm{BaCO}_{3} \times\left(\mathrm{At} . \mathrm{Wt} . \mathrm{C} / \mathrm{M} . \mathrm{Wt} . \mathrm{BaCO}_{3}\right)$
Wt. of $C=0.526 \times(12 / 197)=0.0320 \mathrm{gm}$
$C \%=(W t$. of C/Wt. of Sample) $\times 100=(0.0320 / 0.185) \times 100=17.29 \%$
2) Calculate the weight of carbon dioxide liberated from 1.5 g sample include 34% magnesium carbonate?

Typical Answer for 2):
$\mathrm{MgCO}_{3} \%=\left(\mathrm{Wt} . \mathrm{MgCO}_{3} /\right.$ Sample weight $) \times 100$
$34 \%=\left(\mathrm{Wt} . \mathrm{MgCO}_{3} / 1.5\right) \times 100$
Wt. $\mathrm{MgCO}_{3}=0.51 \mathrm{gm}$
Wt. of $\mathrm{CO}_{2}=\mathrm{Wt}$. of $\mathrm{MgCO}_{3} \times\left(\mathrm{Mt} . \mathrm{Wt} . \mathrm{CO}_{2} / \mathrm{M} . \mathrm{Wt} . \mathrm{MgCO}_{3}\right)$
Wt. of $\mathrm{CO}_{2}=0.51 \times(44 / 84)$
Wt. of $\mathrm{CO}_{2}=0.267 \mathrm{gm}$
3) Calculate the barium sulphate solubility in 0.1 M HCl , if you know that solubility product constant for the precipitate is equal to 1.08×10^{10} and the second dissociation constant for sulphuric acid equal to 1.2×10^{-2}

```
Typical Answer for 3):
BaSO
HSO4}\mp@subsup{4}{}{-}->\mp@subsup{\textrm{H}}{}{+}+\mp@subsup{\textrm{SO}}{4}{2-
K2=[H+][SO4}\mp@subsup{4}{}{2+}]/[HSO4.]=1.2\times1\mp@subsup{0}{}{-2}.......
Ksp=[B\mp@subsup{a}{}{2+}][SO\mp@subsup{O}{4}{2-}]=1.08\times1\mp@subsup{0}{}{-10}........2
```



```
1.2 < 10-2 = [0.1][SO4}\mp@subsup{}{4}{2+}]/[\mp@subsup{\textrm{HSO}}{4}{-}
[HSO4}\mp@subsup{}{4}{-}]=8.3[\mp@subsup{SO}{4}{2+}
[Ba'+
[Ba+}\mp@subsup{}{}{2+}]=9.3[\mp@subsup{SO}{4}{4}\mp@subsup{}{}{2+}
[SO4 4+ ]}=[\mp@subsup{\textrm{Ba}}{}{2+}]/9.
Ksp=[B\mp@subsup{a}{}{2+}][B\mp@subsup{B}{}{2+}]/9.3=1.08 \times10-10
[B\mp@subsup{a}{}{2+}\mp@subsup{]}{}{2}=9.3\times10-10
[Ba'2+]=3\times10-5 mol/l
4) Calculate the barium fluoride solubility in 0.1 M HCl , if you know that solubility product constant for the barium fluoride is equal to \(1.7 \times 10^{-6}\) and the dissociation constant for fluoric acid equal to \(7.4 \times 10^{-4}\).
Typical Answer for 4):
\[
\begin{aligned}
& \mathrm{BaF}_{2}+2 \mathrm{H}^{+} \rightarrow \mathrm{Ba}^{2+}+2 \mathrm{HF} \\
& \mathrm{HF} \rightarrow \mathrm{H}^{+}+\mathrm{F} \\
& \mathrm{Ka}=\left[\mathrm{H}^{+}\right][\mathrm{F}] /[\mathrm{HF}]=7.4 \times 10^{-4} \\
& \text { Square the both side } \\
& \mathrm{Ka}^{2}=\left[\mathrm{H}^{+}\right]^{2}[F]^{2} /[\mathrm{HF}]^{2}=\left(7.4 \times 10^{-4}\right)^{2} \\
& K s p=\left[B a^{2+}\right][F]^{2}=1.7 \times 10^{-6}
\end{aligned}
\]
```

```
Dividing eq 2 on eq 1
Ksp/Ka=(1.7 \times 10-6})/(7.4\times1\mp@subsup{0}{}{-4})=[B\mp@subsup{a}{}{2+}][F\mp@subsup{]}{}{2}[HF\mp@subsup{]}{}{2}/[\mp@subsup{H}{}{+}\mp@subsup{]}{}{2}[F\mp@subsup{F}{}{-
Assume [Ba+ }\mp@subsup{}{}{2+
[HF]=2X
Subsitiuted in eq 3
(1.7 \times10-6) x 0.01/(7.4 x 10-4}\mp@subsup{)}{}{2}=[x][2x\mp@subsup{]}{}{2
0.031=4X3
X= 0.197 mole/l
```

5) Why solubility of calcium oxalate precipitate was increased when adding hydrochloric acid?

Typical Answer for 5):

Because the negative ion which produced from salt dissociation combined with the positive ion and produced a weak acid unstable, then the defect could be happed in the equilibrium state...

According to Lee- Shatelia principle the reaction orientation depart from the left to the right.....
6) Calculate the ionic strength for 0.05 M KNO 3 and 0.1 M Na 2 SO 4 solution?

Typical Answer for 6):

$$
\begin{array}{cclll}
\mathrm{Na}_{2} \mathrm{SO}_{4} \rightarrow & 2 \mathrm{Na}^{+}+\mathrm{SO}_{4}^{2-} & \mathrm{KNO}_{3} \rightarrow & \mathrm{~K}^{+}+\mathrm{NO}_{3}^{-} \\
0.1 M & 0.2 M & 0.1 M & 0.05 M & 0.05 M
\end{array}
$$

$$
\begin{gathered}
I=\frac{1}{2} \sum_{i=1}^{n} c_{i} z_{i}^{2} \\
I=\left[\frac{\left[0.05 x(1)^{2}\right]+\left[0.05 x(1)^{2}\right]\left[0.2 x(1)^{2}\right]+\left[0.1 x(2)^{2}\right]}{2}\right]=0.35
\end{gathered}
$$

7) Calculate the solubility of $\mathrm{Ba}(\mathrm{IO} 3) 2$ in 0.02 M of KIO , solubility product of $\mathrm{Ba}(\mathrm{IO} 3) 2$ equal to $1.57 \times 10-9$

Typical Answer for 7):

$$
\begin{aligned}
& \mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2} \rightarrow \mathrm{Ba}^{2+}+2 \mathrm{IO}_{3}^{-} \\
& \mathrm{Ksp}=\left[\mathrm{Ba}^{2+}\left[\mathrm{IO}_{3}^{-}\right]^{2}\right. \\
& 1.57 \times 10^{-9}=[\mathrm{X}][2 \mathrm{X}+0.02]^{2} \\
& 1.57 \times 10^{-9}=4 \times 10^{-4} \mathrm{X} \\
& X=3.9 \times 10^{-6} \mathrm{M}
\end{aligned}
$$

8) What are the main differences between specific and selective reagents?

Typical Answer for 8):
Specific reagents, which are rare, react only with a single chemical species.
Selective reagents, which are more common, react with only a limited number of species.
9) Show the properties of colloidal and crystalline suspensions?

Typical Answer for 9):
(1) Colloidal suspensions (10-7 to $10-4 \mathrm{~cm}$ in diameter) show no tendency to settle from solution and are not easily filtered
(2) Crystalline suspension

Tend to settle spontaneously and are easily filtered.

