

زانڪۆى سەلاحەدىن ـ ھەوليّر Salahaddin University-Erbil University of Salahaddin College of Education /Department of physics

Lecture 2 MATLAB Basics

Diyar Rasool

9/10/2023

2.1 MATLAB Functions

In MATLAB you will use both built-in functions and functions that you create yourself.

Built-in Functions

- ***** MATLAB has many built-in functions:
- 1. These include sqrt, cos, sin, tan, log, exp, and atan (for arctan).
- 2. Specialized mathematical functions like gamma, erf, and besselj.
- 3. MATLAB also has several **built-in constants**, including **pi** (the number π), **i** (the complex number i = $\sqrt{-1}$), and **Inf** (∞).

2.1 MATLAB Functions

The following table lists some commonly used functions, where variables x and y can be numbers, vectors, or matrices.

cos(x)	Cosine	abs(x)	Absolute value
sin(x)	Sine	sign(x)	Signum function
tan(x)	Tangent	max(x)	Maximum value
acos(x)	Arc cosine	min(x)	Minimum value
asin(x)	Arc sine	ceil(x)	Round towards $+\infty$
atan(x)	Arc tangent	floor(x)	Round towards $-\infty$
exp(x)	Exponential	round(x)	Round to nearest integer
sqrt(x)	Square root	rem(x)	Remainder after division
log(x)	Natural logarithm	angle(x)	Phase angle
log10(x)	Common logarithm	conj(x)	Complex conjugate

✤ There are also some constants which are listed here:

pi The π number, $\pi = 3.14159...$ i, j The imaginary unit $i, \sqrt{-1}$ Inf The infinity, ∞ NaN Not a number

2.1 MATLAB Functions

Function	Description	Mathematical Expression
sin(u)	Sinus	sin(<i>u</i>)
cos(u)	Cosinus	cos(u)
exp(u)	Exponential	E ^u
log(u)	Natural logarithm	ln(<i>u</i>)
10^u	Power of base 10	10 ^{<i>u</i>}
log10(u)	Common (base 10) Iogarithm	log(u)
u^2	Power 2	<i>u</i> ²
sqrt(u)	Square root	u ^{0.5}
1/u	Reciprocal	1/ <i>u</i>

2.2 Punctuation Marks

Punctuation marks		
Punctuation		
apostrophe		('')
brackets		([],(),{},())
<u>colon</u>		(:)
<u>comma</u>		(, ~)
dash		(-, -, -, -)
<u>ellipsis</u>		(,,)
exclamation mark		(!)
full stop / period		(.)
<u>hyphen</u>		(-)
hyphen-minus		(-)
question mark		(?)
quotation marks		(<i>``, " ",</i> ' ', ' ')
<u>semicolon</u>		(;)
<u>slash / stroke / solidus</u>		(/, /)
9/10/2023	MATLAB	5

2.3 The order of precedence

Operation	Algebraic form	MATLAB	Example
Addition	a+b	a + b	3+4
Subtraction	a-b	a-b	14 - 11
Multiplication	$a \times b$	a^*b	$3.14^{*}0.85$
Right division	$a \div b$	a/b	48/8
Left division	$b \div a$	$a \backslash b$	8\56
Exponentiation	a^b	ab	5^2

Precedence	Operator	
1	Parentheses	
2	Power, Left to Right	
2	Multiplication & Division,	
5	Left to right	
1	Addition & Subtraction,	
4	Left to right	

When a parenthesis is needed during arithmetic:

1. (a + b) / (c + d)

2. A*B / (C*D)

2.3 M – Files

- ✤ M-files are ordinary text files containing MATLAB commands.
- You can create and modify them using any text editor or word processor that is capable of saving files.

> You can start *Editor/ Debugger and run* by:

- 1. **edit** % to edit a new file **or** followed by the name of an existing M-file in the current folder.
- 2. Home Tab: New script or New icons, and Open icons.
- 3. Double-clicking on an M-file in the Current Folder Browser to open an existing M-file.
- 4. M-files can be **saved** in a file and then **run** with a **single command** (its name without.m), mouse click on the **run icon** in the Editor tab or **F5**.

2.4 Types of M – files

1. Script M – file. 2. Function M – file.

1. Script M – file: Let's start the scripting process. First, make a new script file in by clicking on the "New" command on the toolbar.

***** In order for the results of a script M-file to be reproducible:

- 1. The script should be **self-contained** (contain all needed).
- **2. Unaffected** by other variables that you might have defined elsewhere in the MATLAB session(**clear all**).
- 3. **Uncorrupted** by leftover graphics (close all, figures at the end of code).

1. Script M – file

Example: Type clc, clear all

- x = 0.15; % value of the variable of x.
- $y = 2x + \sin(x)/2 * \exp(x)$ % value of y
- save as task1.m . The ".m" suffix is mandatory (MATLAB will automatically add the .m extension) in the directory where you want to store your MATLAB scripts.
- After you've created the script file, enter the sample command in the editor window, and save it.
- The output will be displayed in the Command Window.

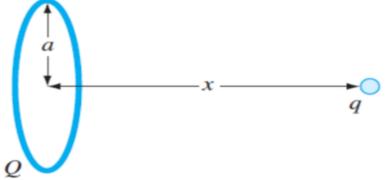
Note that adding **comments** in M-files explains what is being done in the calculation, or might interpret the results of the calculation. The percent sign (%) begins a comment; the rest of the line is not executed. (comments color is **green** to help distinguish them from commands, which appear in **black**.).

9/10/2023

2.4 Cell Mode

- One can divide a script M-file into subunits called cells. This is especially useful if:
- 1. Your M-file is **long.** 2. if you are going to *publish* it
- 3. It can be a big help if you've made a **change** in just one cell and do not want to run the **whole** script all over again.

*****To start a new cell:


- Insert a comment line "title" of the cell that follows starting with a double percent sign %% followed by a space or click on Editor Tab\Insert icon.
- 2. When you click somewhere in the M-file, the cell that contains that location will be **highlighted** in **pale yellow**.
- 3. You can evaluate that cell by: Editor Tab\Run Section icon, Advance icon, Ctrl+Enter, or right click\ Evaluate Current Cell.

Example: A total charge Q is uniformly distributed around a ringshaped conductor with radius a. A charge q is located at a distance x from the center of the ring. The force exerted on the charge by the ring is given by:

$$f = \frac{1}{4\pi e_o} \frac{qQx}{(x^2 + a^2)^{\frac{3}{2}}}$$

Where $e_o = 8.9 \times 10^{-12} C^2 / (Nm^2)$. Find the force where $x = 10 \ cm$ if q and Q are $2 \times 10^{-5} C$ for a ring with a radius of 85 mm.

2.5 MATLAB Calculator

- To begin, you can use MATLAB for simple arithmetic problems. Symbols like + (plus), - (minus), * (multiply), and / (divide) all work as you would expect.
- * In addition, ^ is used for exponentiation. For example, if you type: **Examples:** 75 32 * 2 + 4/2

```
2+2
factor(123456789),
sin(pi/3).
x + 6 = 90
x = 90 - 6
x = x + 4
x = 34^2
x = 2
```

 $\mathbf{t} = \mathbf{x} + \mathbf{a}$

Notes

Note: that MATLAB prints the answer and assigns the value to a variable called ans. If you want to perform further calculations with the answer, you can use the variable *ans* rather than retype the answer.

>> u = cos(10) >> v = sin(10) >> u^2 + v^2 u = v = ans = -0.8391 -0.5440 1

* Note: Trigonometric functions in MATLAB use radians, not degrees.

- Note: MATLAB displays only 5 digits by default. To display more digits, type format long (15 digits). Type format short to return to 5-digit display.
- * **Recovering from Problems:** If you make an error in an input line, MATLAB will normally print an error message.

Notes

- Note that MATLAB places a marker (a vertical line segment) at the place where it thinks the error might be; however, the actual error may have occurred earlier or later in the expression.
- Note The UP- and DOWN-ARROW keys allow you to scroll back and forth through all the commands you've typed in a MATLAB session and are very useful when you want to correct, modify, or reenter a previous command.
- Aborting Calculations: If MATLAB gets hung up in a calculation, or seems to be taking too long to perform an operation, you can usually abort it by typing CTRL+C.

2.6 Help

help general>>help factor>>more on>>more offHelp Browser:While help in the Command Window is useful for
getting quick information on a particular command, more extensive
documentation is available via the MATLAB Help Browser.

- ***** Different way of invoke, one is following:
- >> **doc** sin
- Lookfor command searches the first line of every MATLAB help file for a specified string (use lookfor -all to search all lines)
- >> lookfor factor
- You can type **demo** (or select it in the help browser) to try some of MATLAB's online demonstrations.
- Methods to exit MATLAB: Type **quit** at the prompt, click on (×), **close** icon, Alt+F4.

2.7 Symbolic Computation

- Type help symbolic to make sure that the Symbolic Math Toolbox is installed on your system.
- To perform symbolic computations, you must use syms to declare the variables.
 > syms x y
 >> (x y)*(x y)^2
 - ans = $(x-y)^3$ ans = $x^3-3*x^2*y+3*x*y^2-y^3$
- The command expand told MATLAB to multiply out the expression.
- MATLAB has a command called simplify, which you can sometimes use to express a formula as simply as possible. For example,

```
>> simplify((x^3 - y^3)/(x - y))
ans =
x^2+x*y+y^2
```

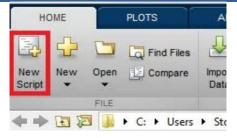
2.7 Symbolic Computation

When you work with symbolic expressions you often need to <u>substitute</u> (using <u>subs</u>) a numerical value, or even another symbolic expression, for one (or more) of the original variables in the expression.

For example:

>> d = 1, syms u v	$>> w = u^2 - v^2$	>> subs(w, u, 2)
>> subs(w, v, d)	>> subs(w, v, u + v)	>> subs(w,[u v],[4 3])

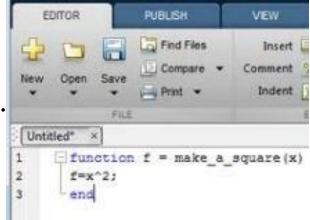
Note When you enter multiple commands on a single line separated by commas, MATLAB evaluates each command and displays the output on separate lines.


2.4 Types of M – files

2. Function M - File


- If the file contains only function definitions, the first function is the main function, and is the function that MATLAB associates with the file name.
- Functions that follow the main function or script code are called local functions.
- Like a script M-file, a function M-file is a plain text file that should reside in your current directory or elsewhere in your MATLAB path.

Steps to do Function M – File


1. Open two script windows:

2. From a script window type function $f = make_a_square(x)''$ into line1. The word "function" tells MATLAB that this script will be a function.

3. Finishing the Function: complete the codeby entering "f=x^2;" on line 2 and "end" on line3.Typing end at the end of the function.

Steps to do Function M – File

4. Saving the function: Once your function is complete, save the function using the save button. The default name of the save file will be the same as the name of the function. **Make sure that you do not**

change this.

5. From the second script type the value of x and at the end type $f = make_a_square(x)$ in which you have been written at the beginning.

Examples

1.Use function M file for the following:

*****From first script type:

function f=make_a_square(x)

f=x^2;

***From the second script type:**clc, clear all, close all x=10; f=make_a_square(x), ans: f= 100

End

2. Suppose that you want to find the smallest value of *b* for which $sin(10^{-b})/(10^{-b})$ and 1 agree to 15 dig^{its} function y=sinelimit(x) clc, clear all,close all y = sin(x)/x; x=0.01end y=sinelimit(x)