University of Salahaddin College of Education /Department of physics

Lecture 3

Vectors and Matrices

Diyar Rasool

3.1 Vectors

* A vector is an ordered list of numbers.
* You can enter a vector of any length in MATLAB by typing a list of numbers, separated by commas and/or spaces, inside square brackets.
* For example: >> z = [1,4,7,18] >> y=[4-35-281]
\star Vector of values running from 1 to 9 :
>> $x=1: 9 \quad X=123456789$
* The increment can be specified as the middle of three argument:
>> $x=0: 2: 10 \quad x=0246810$
* Increments can be fractional or negative, for example,
>> 0:0.1:1 or 100:-1:0.
\star linspace $(\mathbf{0}, \mathbf{1 0 , 6})$ ans $=\begin{array}{llllll}0 & 2 & 4 & 6 & 8 & 10\end{array}$

3.1 Vectors

* The elements of the vector \mathbf{x} can be extracted as $\mathbf{x}(\mathbf{1}), \mathbf{x}(\mathbf{2})$, etc. For example: >> $x=0: 7$;
$\gg x(3) \quad \gg x(4: 7) \quad \gg x([4,7])$
* To change the vector \mathbf{x} from a row vector to a column vector, put a prime (') after \mathbf{x} : >> \mathbf{x},
$\gg x 1=[5,3,1,23,11], \min (x 1), \max (x 1)$, mean(x1), sort(x1), sum(x1).
* You can perform mathematical operations on vectors.
for example, to square the elements of the vector \mathbf{x},
$\gg x=0: 2: 10$
>> x.^2 ans $=04163664$ 100;
* The period(.) in this expression says that the numbers in \mathbf{x} should be squared individually, or element-by-element.

3.1 Vectors

* Typing $x^{\wedge} 2$ would tell MATLAB to use matrix multiplication to multiply \mathbf{x} by itself and would produce an error message in this case.
* Similarly, you must type .* or ./ if you want to multiply or divide vectors element-by-element.
>> x.*y ans = 0 - 6 20 -12 6410

Most MATLAB operations are, by default, performed element-byelement. For example, you do not type a period(.) before: addition, subtraction and $\exp (\mathbf{x})$ (the matrix exponential function is expm).

Example

The Redlich-Kwong equation of state is given by:

$$
P=\frac{R T}{v-b}-\frac{a}{v(v+b) \sqrt{T}}
$$

Where $R=8.31 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}, T$
$=171,181,191 \mathrm{~K}$, the value of a from 0.1 to $1.9, b$
$=0.086$, and $v=5 \times 10^{-2}$. Find the pressure P.

3.2 Matrices

* A matrix is a rectangular array of numbers. Row and column vectors are examples of matrices.
* Example 1: Write the following Matrix: $a=\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ 5 & 7 & 15 & 3 \\ 12 & 9 & 6 & 3\end{array}\right)$

Ans: $a=[1: 4 ; 5,7,15,3 ; 12:-3: 3]$;
Note The "[]" defines the matrix in MATLAB. The matrix elements in any row are separated by commas, and the rows are separated by semicolons.

* The elements in a row can also be separated by spaces.

Example 2: Extract: $\mathbf{a}(7), \mathbf{a}(3,2), \mathbf{a}(2,:), \mathbf{a}(1: 3,2: 3)$, $\mathbf{a}\left(\left[\begin{array}{l}2 \\ 3\end{array}\right],[13]\right)$

* If two matrices \mathbf{A} and \mathbf{B} are the same size:
sum: $\mathbf{A}+\mathbf{B} \quad$ add a scalar (a single number): $\mathbf{A}+\mathbf{c}$ difference: A-B subtracts: A-c

3.2 Matrices

Here are some commands:

zeros $(1,3)$, ones $(2,4), \operatorname{rand}(3,5), \operatorname{randn}(2,5)$, eye $(n, m), \operatorname{det}(A)$, size (A), Length (A).

Example: If $\mathrm{v}=[1,2,4,5], \mathrm{w}=[1 ; 2 ; 4 ; 5]$, and $\mathrm{A}=[1,2,3 ; 4,-5,6 ; 5,-6,7]$, try to do the following steps:

$$
\begin{aligned}
& \gg \mathrm{v}+2 \quad \gg \mathrm{~B}=\mathrm{A}^{\prime} \quad \gg \mathrm{A} * \mathrm{~B} \quad \gg \mathrm{~A}+\mathrm{B} \quad \gg \mathrm{~B}=\mathrm{A} . \\
& \gg \mathrm{A}(2,3) \quad \gg \mathrm{A}\left(\left[\begin{array}{lll}
2 & 3
\end{array}\right],\left[\begin{array}{ll}
1 & 2
\end{array}\right]\right) \quad \gg \mathrm{B}(:, 2)=[1]
\end{aligned}
$$

$$
\gg \mathrm{B}=\mathrm{A}\left(\left[\begin{array}{ll}
3 & 2
\end{array}\right],\left[\begin{array}{ll}
2 & 1
\end{array}\right]\right)
$$

$$
\gg \mathrm{B}=[\mathrm{A}(3,2) ; \mathrm{A}(3,1) ; \mathrm{A}(2,2) ; \mathrm{A}(2,1)]
$$

3.2 Matrices

Transpose	$B=A^{\prime}$
Identity Matrix	eye(n) \rightarrow returns an $n \times n$ identity matrix eye(m, n) \rightarrow returns an $m \times n$ matrix with ones on the main diagonal and zeros elsewhere.
Addition and subtraction	$\begin{aligned} & C=A+B \\ & C=A-B \end{aligned}$
Scalar Multiplication	$B=\alpha A$, where α is a scalar.
Matrix Multiplication	$C=A * B$
Matrix Inverse	$B=\operatorname{inv}(A), A$ must be a square matrix in this case. rank $(A) \rightarrow$ returns the rank of the matrix A.
Matrix Powers	$B=A . \wedge 2 \rightarrow$ squares each element in the matrix $C=A * A \rightarrow$ computes $A^{\star} A$, and A must be a square matrix.
Determinant	det (A), and A must be a square matrix.

3.3 MATLAB Functions

Functions @ sign:

$$
g=@(x, y) x^{\wedge} 2+y^{\wedge} 2 ; \quad g=g(1,2) ; \quad g=5
$$

Example: Use built in functions at the points $(1: 5,2)$ and $(1: 5,2: 6)$ for the function of $g=x^{2}+y^{2}$.

Ans: $\mathrm{g}=@(\mathrm{x}, \mathrm{y}) \mathbf{x} .^{\wedge} \mathbf{2}+\mathrm{y}^{\wedge} \mathbf{2} ; \mathrm{g}(1: 5,2)$;

3.4 Solving Equations

* You can solve algebraic equations, differential equations and solve equations involving variables with solve or fzero.
* The command solve can solve:

1. Higher-degree polynomial equations.
2. Equations involving more than one variable

* The input to solve can be symbolic expression
* Solve algebraic equations to get either exact analytic solutions or high-precision numeric solutions.

Examples about analytic solutions

1. Solve the following equations:

\gg syms $\mathrm{x} \quad$ solve $\left(\mathrm{x}^{\wedge} 2-2^{*} \mathrm{x}-4==0\right) ; \quad$ ans $=5^{\wedge}(1 / 2)+1 \quad 1$ $5^{\wedge}(1 / 2)$.

* The answer is the exact (symbolic) solutions.
* To get numerical solutions, type double (ans), or vpa(ans) to display more digits.

2. Solve $x^{2}-3 x=-7$; syms x solve $\left(x^{\wedge} 2-3^{*} x+7\right)$
$\mathrm{ans}=\begin{aligned} & 3 / 2+1 / 2^{*} i * 19^{\wedge}(1 / 2) \\ & 3 / 2-1 / 2 * i * 19^{\wedge}(1 / 2)\end{aligned}$

* To get numerical solutions, type double(ans), or vpa(ans).

3. Solve $(2 x-\ln y=1$ for y in terms of $x)$,
type: syms xy
solve($\left.2^{*} x-\log (y)-1, y\right)$

Examples

4. Solve these two equations: $x^{2}-y=2, y-2 x=5$

Ans: syms x y $[x, y]=\operatorname{solve}\left(x^{\wedge} \mathbf{2 - y}-2, y-2 * x-5\right) ;$

$$
\begin{array}{cr}
\mathrm{x}= & \mathrm{y}= \\
1+2^{\star} 2^{\wedge}(1 / 2) & 7+4^{*} 2^{\wedge}(1 / 2) \\
1-2^{\star} 2^{\wedge}(1 / 2) & 7-4^{*} 2^{\wedge}(1 / 2)
\end{array}
$$

* You can extract the first x and y values by typing:
$\gg \mathbf{x}(\mathbf{1}) \quad$ ans $=1+2^{*} 2^{\wedge}(1 / 2) \quad \gg \mathbf{y}(\mathbf{1}) \quad$ ans $=7+4^{*} 2^{\wedge}(1 / 2)$
* Some equations cannot be solved symbolically, and in these cases solve tries to find a numerical answer.

5. syms x solve $(\sin (x)==2-x)$

