Chapter Four

Measures of central tendency

A measure of central tendency is a value at the center or middle of a data set. This value represents all data of the group.

Types of central tendency

There are some important types of measures of central tendency such as:

1- Arithmetic mean:(Avarge)

The arithmetic mean (generally called mean) is the sum of the values divided by the total number of values.

Arithmetic mean for ungrouped data:

Population mean:

The mean of population for (N) observations (values) $X_{1}, X_{2}, \ldots \ldots, X_{N}$ defined as:

$$
\mu=\frac{\sum_{i=1}^{N} X_{i}}{N}
$$

Sample mean:

The mean of sample for (n) observations (values) $X_{1}, X_{2}, \ldots . ., X_{n}$ defined as:

$$
\bar{X}=\frac{\sum_{i=1}^{n} X_{i}}{n}
$$

Example: Find the sample mean from the following data:

$$
\begin{aligned}
& 4,5,8,10,12,6,5,14
\end{aligned}
$$

Arithmetic mean for frequency distribution:

If $X_{1}, X_{2}, \ldots \ldots, X_{\mathrm{m}}$ are the mid points and $f_{1}, f_{2}, \ldots \ldots . . f_{\mathrm{m}}$ are frequencies, then:

$$
\bar{X}=\frac{\sum_{i=1}^{m} f_{i} X_{i}}{\sum_{i=1}^{m} f_{i}}
$$

Example: Find the mean from the following frequency table:

Classes	$2-4$	$5-7$	$8-10$	$11-13$	$14-16$
f_{i}	5	7	3	4	1

Solution:

Classes	f_{i}	X_{i}	$f_{i} X_{i}$
$2-4$	5	3	15
$5-7$	7	6	42
$8-10$	3	9	27
$11-13$	4	12	48
$14-16$	1	15	15
Total	20		147

$$
\bar{X}=\frac{\sum_{i=1}^{m} f_{i} X_{i}}{\sum_{i=1}^{m} f_{i}}=\frac{147}{20}=6.35
$$

2-Weighted Arithmetic Mean (Weighted Average)

One of the limitations of the arithmetic mean that is gives equal importance to all the elements. But there are cases where the relative importance of the difference elements is not the same. In this case uses the weighted Arithmetic Mean:
W_{i} : the weights of the elements

$$
\bar{X}_{W}=\frac{\sum_{i=1}^{n} W_{i} X_{i}}{\sum_{i=1}^{n} W_{i}}
$$

Example: The following data represents the degrees and number of hours for a set of subjects for a student:

Degrees of subjects $\left(X_{\mathrm{i}}\right)$	75	87	63	94	61
Number of hours $\left(W_{\mathrm{i}}\right)$	3	2	3	3	4

Solution:

Degrees of subjects $\left(X_{\mathrm{i}}\right)$	Number of hours $\left(W_{\mathrm{i}}\right)$	$\boldsymbol{X}_{\mathrm{i}} \boldsymbol{W}_{\mathrm{i}}$
75	3	$\mathbf{2 2 5}$
87	2	$\mathbf{1 7 4}$
63	3	$\mathbf{1 8 9}$
94	3	$\mathbf{2 8 2}$
61	4	$\mathbf{6 1 * 4 = 2 4 4}$
Total	$\mathbf{1 5}$	$\mathbf{1 1 1 4}$

$$
\bar{X}_{W}=\frac{\sum_{i=1}^{n} W_{i} X_{i}}{\sum_{i=1}^{n} W_{i}}=\frac{1114}{15}=74.2667
$$

3- - The Mode:

It is the value that occurs more frequently in a set of data.
The Mode for ungrouped data:

Example (1): Find the mode from the following data:

$$
4, \underline{5}, 8,10,12.5,6, \underline{5}, 4,2, \underline{5}
$$

Solution: mode $=5$
Example (2):

$$
4, \underline{5}, 8, \underline{5}, 4,6, \underline{5}, 4,2,7
$$

Solution: mode $=4,5$

Example (3):

$$
3,5.6,8,10,12,6,7,4,2,1
$$

Solution: there no mode

The Mode for frequency distribution:

A- The mode in discrete frequency distribution:

1- Select the largest frequency
2- Select the modal class that corresponds to the largest frequency

Example: For discrete frequency distribution

Example (1): Find the mode from the following frequency table:

Classes	$12-14$	$15-17$	$18-20$	$21-23$	$24-26$
f_{i}	5	7	3	4	1

Solution:

1- Select the largest frequency

Classes	f_{i}
$12-14$	5
$15-17$	7
$18-20$	3
$21-23$	4

$24-26$	1

2- Select the modal class that corresponds to the largest frequency (15-1 7)

Example (2): Find the mode from the following frequency table:

Classes	f_{i}
$100-104$	22
$105-109$	6
$110-114$	$\mathbf{7}$
$\mathbf{1 1 5 - \mathbf { 1 1 9 }}$	$\mathbf{1 0}$
10	
$120-124$	22
$125-129$	3

Solution:

1- Select the largest frequency
2- Select the modal class that corresponds to the largest frequency (115-1 19)

B- The Mode in continuous frequency distribution:

1- Select the largest frequency.
2 - Select the modal class that corresponds to the largest frequency.
3- Calculate the mode:

$$
\text { Mode }=\text { L.L. }+\frac{\left(f_{k}-f_{k-1}\right) L_{k}}{\left(f_{k}-f_{k-1}\right)+\left(f_{k}-f_{k+1}\right)}
$$

Where;
L.L. $=$ lower limit of the median class.
$f_{\mathrm{k}}=$ largest frequency.
$f_{\mathrm{k}-1}=$ Previous frequency.
$f_{\mathrm{k}+1}=$ next frequency .
$L_{\mathrm{k}}=$ Length (width) of median class.

Examples: For continuous frequency distribution

bExample (1): Find the mode from the following frequency table:

Classes	$1-3$	$3-5$	$5-7$	$7-9$	$9-11$	$11-13$	$13-15$
f_{i}	4	10	16	12	6	1	1

Solution: 1- Select the largest frequency

Classes	f_{i}
$11-13$	4
$13-15$	10
$f_{\mathrm{k}-1}$	
	18
$17-19$	12
$19-21$	6
$21-23$	1
$23-25$	

2- Select the modal class that corresponds to the largest frequency (15-1 7)
3- L.L. $=15 \quad f_{k}=18 \quad f_{k-1}=10 \quad f_{k+1}=12 \quad L_{k}=17-15=2$

$$
\begin{aligned}
\text { Mode } & =L . L .+\frac{\left(f_{k}-f_{k-1}\right) L_{k}}{\left(f_{k}-f_{k-1}\right)+\left(f_{k}-f_{k+1}\right)} \\
& =15+\frac{(18-10) 2}{(18-10)+(18-12)} \\
& =15+\frac{(8) 2}{(8)+(6)} \\
& =15+\frac{16}{14}=15+1.43=16.43
\end{aligned}
$$

Example (2): Find the mode from the following frequency table:

Classes	Less than 30	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
f_{i}	3	5	9	8	6	2

Solution: 1- Select the largest frequency

Classes	f_{i}
Less than 30	3
$30-40$	5
$\mathbf{y y n}$	$f_{\mathrm{k}-1}$
$\mathbf{4 0 - 5 0}$	
largest frequency $\left(f_{\mathbf{k}}\right)$	

$50-60$	8
$60-70$	6
$70-80$	2

2 - Select the modal class that corresponds to the largest frequency ($\mathbf{4 0} \mathbf{- 5 0}$)
3-

$$
\text { L.L. }=40 \quad f_{k}=9 \quad f_{k-1}=5 \quad f_{k+1}=8 \quad L_{k}=50-40=10
$$

$$
\begin{aligned}
\text { Mode }= & L . L .+\frac{\left(f_{k}-f_{k-1}\right) L_{k}}{\left(f_{k}-f_{k-1}\right)+\left(f_{k}-f_{k+1}\right)} \\
& =40+\frac{(9-5) 10}{(9-5)+(9-8)} \\
& =40+\frac{(4) 10}{(4)+(1)}=40+\frac{40}{5} \\
& =40+8=48
\end{aligned}
$$

3-The median:

The median of data set is the value that divides it into two equal parts.

The median for ungrouped data:

1. If the number of the observations (\mathbf{n}) is odd:

The median is the value which arranged in $\left(\frac{n+1}{2}\right)$
Or $\quad M e=X_{\frac{n+1}{2}}$
Example: Find the median from the following data:

$$
4,5,8,10,12,6,5,14,2
$$

Solution: $\mathrm{n}=\mathbf{9}$ is odd
Arrange the data

$$
2,4,5,5,6,8,10,12,14
$$

$$
M e=X_{\frac{n+1}{2}}=X_{\frac{9+1}{2}}=X_{5}=6
$$

2. If the number of the observations (n) is even:

The median is average of the two middle numbers.
Or $\quad M e=\frac{X_{\frac{n}{2}}+X_{\frac{n}{2}+1}}{2}$
Example : Find the median from the following data:

$$
4,5,8,10,12,6,5,14,2,15
$$

Solution: $n=10$ is even and Arrange the data

The Median for Frequency Distribution:

A- The median in continuous frequency distribution:

Steps to find the median value in the frequency distribution:
1- Calculate the cumulative frequency $\left(F_{\mathrm{i}}\right)$.
2- Calculate $\frac{\sum f_{i}}{2}$
3- Select the Median class which is corresponds to the next cumulative frequency $\left(F_{\mathrm{k}}\right)$
4- Calculate the median:

$$
\text { Median }=\text { L.L. }+\frac{L_{k}}{f_{k}}\left(\frac{\sum f_{i}}{2}-F_{k-1}\right)
$$

Where;
L.L. $=$ lower limit of the median class.
$\Sigma f_{i}=$ Total frequency.
$F_{\mathrm{k}-1}=$ the previous cumulative frequency.
$f_{\mathrm{k}}=$ frequency of the median class.
$L_{\mathrm{k}}=$ Length (width) of median class.
Examples: For continuous frequency distribution
Example (1): Find the median from the following frequency table:

Classes	$1-3$	$3-5$	$5-7$	$7-9$	$9-11$	$11-13$	$13-15$
f_{i}	4	10	16	12	6	1	1

Solution: 1-Calculate the cumulative frequency $\left(F_{\mathrm{i}}\right)$.

Classes	f_{i}	$\boldsymbol{F}_{\mathbf{i}}$
$1-3$	4	$\mathbf{4}$
$3-5$	10	$\mathbf{1 4}$
$\mathbf{5}-\mathbf{7}$	$\boldsymbol{f}_{\mathbf{k}}=\mathbf{1 6}$	$\mathbf{3 0}$
$7-9$	12	$\mathbf{4 2}$
$9-11$	6	$\mathbf{2 8}$
$11-13$	1	$\mathbf{4 9}$
$13-15$	1	$\mathbf{5 0}$
Total	$\sum f_{i}=50$	

2- Calculate $\frac{\sum f_{i}}{2}=\frac{50}{2}=25$
3- Select the median class which is corresponds to $F_{\mathrm{k}}(5-7)$
$4-$

$$
\text { L.L. }=5 \quad L_{k}=7-5=2
$$

$$
f_{k}=16
$$

$$
F_{k-1}=14
$$

$$
\text { Median }=L . L .+\frac{L_{k}}{f_{k}}\left(\frac{\sum f_{i}}{2}-F_{k-1}\right)
$$

Median $=5+\frac{2}{16}(25-14)$
Median $=5+\frac{2}{16}(11)$
Median $=5+\frac{22}{16}$
Median $=5+1.375=6.375$
Example (2): Find the median from the following frequency table:

Classes	Less than 300	$300-400$	$400-500$	$500-600$	$600-700$	greater than 700
f_{i}	3	5	9	8	6	2

Solution: 1-Calculate the cumulative frequency $\left(F_{\mathrm{i}}\right)$.

Classes	f_{i}	$\boldsymbol{F}_{\mathrm{i}}$
Less than 300	3	$\mathbf{3}$

$300-400$	5	$\mathbf{8}$
$\mathbf{4 0 0}-\mathbf{5 0 0}$	$\mathbf{9}$	17
$500-600$	8	$\mathbf{2 5}$
$600-700$	6	$\mathbf{3 1}$
greater than 700	2	$\mathbf{3 3}$
Total	$\sum f_{i}=33$	

2- Calculate $\frac{\sum f_{i}}{2}=\frac{33}{2}=16.5$
3- Select the median class which is correspond to $F_{\mathrm{k}}(400-500)$
$4-\quad$ L.L. $=400$

$$
L_{k}=500-400=100
$$

$$
f_{k}=9
$$

$$
F_{k-1}=8
$$

$$
\begin{aligned}
& \text { Median }=\text { L.L. }+\frac{L_{k}}{f_{k}}\left(\frac{\sum f_{i}}{2}-F_{k-1}\right) \\
& \text { Median }=400+\frac{100}{9}(16.5-8) \\
& \text { Median }=400+\frac{100}{9}(8.5)=400+\frac{850}{9}=400+94.44=494.44
\end{aligned}
$$

B- The Median in Discrete Frequency Distribution:

1- Calculate the cumulative frequency $\left(F_{\mathrm{i}}\right)$.
2- Calculate $\frac{\sum f_{i}}{2}$
3- Select the median class which is corresponds to F_{k}

Examples: For discrete frequency distribution:

Example (1): Find the median from the following frequency table:

Classes	$12-14$	$15-17$	$18-20$	$21-23$	$24-26$
f_{i}	5	7	3	4	1

Solution: 1- Calculate the cumulative frequency $\left(F_{\mathrm{i}}\right)$.

Classes	f_{i}	$\boldsymbol{F}_{\mathbf{i}}$
$12-14$	5	$\mathbf{5}$
$\mathbf{1 5 - 1 7}$	$\mathbf{7}$	$\mathbf{1 2}$
$18-20$	3	$\mathbf{1 5}$
$21-23$	4	$\mathbf{1 9}$
$24-26$	1	$\mathbf{2 0}$
Total	$\sum f_{i}=20$	

2- Calculate $\quad \frac{\sum f_{i}}{2}=\frac{20}{2}=10$
3- Select the median class which is corresponds to $F_{\mathrm{k}}(15-17)$
Example (2): Find the median from the following frequency table:

Classes	$100-104$	$105-109$	$110-114$	$115-119$	$120-124$	$125-129$
f_{i}	2	8	18	13	7	2

Solution:

1- Calculate the cumulative frequency $\left(F_{\mathrm{i}}\right)$.

Classes	f_{i}	$\mathbf{F}_{\mathbf{i}}$
$\mathbf{1 0 0}-\mathbf{1 0 4}$	$\mathbf{2}$	$\mathbf{2}$
$\mathbf{1 0 5 - 1 0 9}$	$\mathbf{8}$	$\mathbf{1 0}$
$\mathbf{1 1 0 - 1 1 4}$	$\mathbf{1 8}$	$\mathbf{2 8}$
$\mathbf{1 1 5 - \mathbf { 1 1 9 }}$	$\mathbf{7}$	$\mathbf{3 5}$
$\mathbf{1 2 0 - 1 2 4}$	$\mathbf{3}$	$\mathbf{3 8}$
$\mathbf{1 2 5}-\mathbf{1 2 9}$	$\mathbf{2}$	$\mathbf{4 0}$
Total	$\sum f_{i}=40$	
2- Calculate $\frac{\sum f_{i}}{2}=\frac{40}{2}=20$		

3- Find Median class which is corresponds to $F_{\mathrm{k}}(110-114)$

5-The Lower Quartile

$$
Q_{1}=L b_{Q_{1}}+\frac{\frac{1}{4} n-f_{c}}{f_{Q_{1}}} . C
$$

$Q_{1}=$ the lower quartile
$L b_{Q_{1}}=$ the lower limit of the lower quartile
n = the sum of data
$f_{c}=$ the cumulative frequency before the lower quartile class
$f_{Q_{1}}=$ the frequency of the lower quartile class
$C=$ the width of interval class

The Upper Quartile

$Q_{3}=L b_{Q_{3}}+\frac{\ldots n-f_{c}}{f_{Q_{3}}} . C$
$Q_{3}=$ the upper quartile
$L b_{Q_{3}}=$ the lower boundary of the upper quartile
$n=$ the sum of data
$f_{c}=$ the cumulative frequency before the upper quartile class
$f_{Q_{1}}=$ the frequency of the upper quartile class
$C=$ the width of interval class

> The Percentile

$$
P_{x}=L b_{P_{x}}+\frac{\frac{x}{100} n-f_{c}}{f_{P_{x}}} . C
$$

$P_{x}=$ the $x^{\text {th }}$ percentile
$L b_{P_{x}}=$ the lower boundary of the $x^{\text {th }}$ percentile
n = the sum of data
$f_{c}=$ the cumulative frequency before the $x^{\text {th }}$ percentile class
$f_{P_{x}}=$ the frequency of the $x^{\text {th }}$ percentile class
$C=$ the width of interval class

Example 37

The length of 40 insects of a certain species were measured correct to the nearest millimeter.

Lengths (mm)	Frequency $\left(f_{i}\right)$
$25-29$	2
$30-34$	4
$35-39$	7
$40-44$	10
$45-49$	8
$50-54$	6
$55-59$	3

Use the cumulative frequency curve (ogive) to estimate:
a. the median length
b. the upper quartile
c. the lower quartile

Solution

The cumulative frequency table is constructed below. The table shows the cumulative frequency distribution of the length of 40 insects.
a. the median length, 50% of the total frequency $=\frac{50}{100} \times 40=\ldots \ldots$.

From the curve, the median length =
b. the upper quartile, 75% of the total frequency $=\frac{75}{100} \times 40=$

From the curve, the upper quartile $=\ldots \ldots$.
c. the lower quartile, 25% of the total frequency $=\frac{25}{100} \times 40=\ldots .$.

From the curve, the lower quartile $=$ \qquad
By formula:

Lengths (mm)	Frequency $\left(f_{i}\right)$	The cumulative frequency
$25-29$	2	2
$30-34$	4	
$35-39$	7	
$40-44$	10	
$45-49$	8	
$50-54$	6	
$55-59$	3	

$1 / 2 n=1 / 2 \times 40=20,20$ in the class $40-44$.

$$
\begin{aligned}
& Q_{2}=L b_{Q_{2}}+\frac{\frac{1}{2} n-f_{c}}{f_{Q_{2}}} . C \\
& Q_{2}=39.5+\frac{\frac{1}{2} \cdot 40-13}{10} .5 \\
& Q_{2}=39.5+\frac{20-13}{10} .5 \\
& Q_{2}=39.5+\frac{7}{2}=39.5+3.5=43
\end{aligned}
$$

a. $3 / 4 n=3 / 4 x$ $=$ \qquad in the class \qquad -

$$
\begin{aligned}
& Q_{3}=L b_{Q_{3}}+\frac{\frac{3}{4} n-f_{c}}{f_{Q_{3}}} \cdot C \\
& Q_{3}=\ldots \ldots+\frac{\frac{3}{4} \times \ldots \ldots-\ldots \ldots}{\ldots \ldots} \ldots \ldots .
\end{aligned}
$$

$$
Q_{3}=\ldots \ldots+\frac{\ldots \ldots}{\ldots \ldots}=\ldots \ldots+\ldots \ldots=\ldots \ldots
$$

b. $1 / 4 n=1 / 4 \times \ldots . .=$ \qquad in the class

$$
Q_{1}=L b_{Q_{1}}+\frac{\frac{1}{4} n-f_{c}}{f_{Q_{1}}} . C
$$

$Q_{1}=$ \qquad $+\cdots \cdots \cdot$ \qquad $+\ldots$. \qquad

Example:

find the the quartiles Q1, Q2, and Q3 of the following data.

alass interal	Frequency (ii)
$50-69$	3
$70-89$	7
$90-109$	4
$110-129$	4
$130-149$	9

Solution: 1) find the cumulative frequency and the summation of frequencies and real interval limit.

Char heterval	Fexquency [目	Cumutative frequency	Realinterval
50-69	3	3	49.5-69.5
70-89	7	10	$69.5-89.5$
90.109	4	14	$89.5-109.5$
110-129	4	18	109.5-129.5
130-149	9	27	129.5-149.5

2) find the arrangement number of quartiles to find quartile interval 1.

$$
q 1=(1 / 4) \times n=(1 / 4) \times 27=6.75
$$

The interval of quartile number 1 is have the cumulative frequency $=10$

$$
Q_{1}=L_{1}+\frac{\frac{n}{4}-c f}{f} x i
$$

$L_{1}=$ Lower linit of quartles interval	$=69.5$
cf $=$ the cumulatire frequency of the prwious interval of the quarties interval	= 3
f - the frequency of quarties inserval	=7
$\mathrm{i}=$ the length of quarties interval	$=20$

$$
Q_{1}=L_{1}+\frac{\frac{n}{4}-\mathrm{cf}}{f} x i \quad Q_{1}=69.5+\frac{6.75-3}{7} x 20=80.2
$$

3. find the arrangement number of quartiles to find quartile interval 2.
$Q_{2}=(2 / 4) \times n=(2 / 4) \times 27=13.5$
The interval of quartile number 2 is have the cumulative frequency $=14$

$$
* Q_{2}=L_{1}+\frac{2\left(\frac{n}{4}-c f\right)}{f} x i \quad Q_{2}=89.5+\frac{13.5-10}{4} x 20=107
$$

4. find the arrangement number of quartiles to find quartile interval 3.

$$
Q_{3}=(3 / 4) \times n=(3 / 4) \times 27=20.25
$$

The interval of quartile number 3 is have the cumulative frequency $=27$

$$
Q_{3}=L_{1}+\frac{3\left(\frac{n}{4}-c f\right)}{f} x i \quad Q_{3}=129.5+\frac{20.25-18}{9} x 20=134.5
$$

