Lecture Notes

For Environmental Health Science Students

Fngineering Drawing

Ethiopia Public Health Training inittative

> Wuttet Taffesse, Laikemariam Kassa

Haramaya University

In collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education

Funded under USAID Cooperative Agreement No. 663-A-00-00-0358-00.

Produced in collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education.

I mportant Guidelines for Printing and Photocopying

Limited permission is granted free of charge to print or photocopy all pages of this publication for educational, not-for-profit use by health care workers, students or faculty. All copies must retain all author credits and copyright notices included in the original document. Under no circumstances is it permissible to sell or distribute on a commercial basis, or to claim authorship of, copies of material reproduced from this publication.

©2005 by Wuttet Taffesse, Laikemariam Kassa

All rights reserved. Except as expressly provided above, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission of the author or authors.

This material is intended for educational use only by practicing health care workers or students and faculty in a health care field.

PREFACE

The problem faced today in the learning and teaching of engineering drawing for Environmental Health Sciences students in universities, colleges, health institutions, training of health center emanates primarily from the unavailability of text books that focus on the needs and scope of Ethiopian environmental students.

This lecture note has been prepared with the primary aim of alleviating the problems encountered in the teaching of Engineering Drawing course and in minimizing discrepancies prevailing among the different teaching and training health institutions. It can also be used as a reference material for professional sanitarians.

The graphics of engineering design and construction may very well be the most important course of all studies for an engineering or technical career. The indisputable reason why graphics or drawing is so extremely important is that it is the language of the designer, technician, sanitarian, and engineer, used to communicate designs and construction details to others. The language of graphics is written in the form of drawings that represent the shape, size, and specifications of physical objects. The language is read by interpreting drawings so that physical objects can be constructed exactly as originally conceived by the designer.

This lecture note is devoted to provide general aspects of graphic communication like geometric construction, orthographic projections, maps etc particularly for environmental sanitation works such as dry pit latrine construction, drainage or sewerage construction etc. Each chapter begins by specifying learning objectives. The text and the self-explanatory drawings are much helpful to understand the subject even for the beginners. More over, other subsidiary topics like sectioning, projection of points and lines are added to enable students acquire concrete knowledge and skill for their professional career. Finally, it contains a glossary, which summarizes important terminologies used in the text. For further reading, students are encouraged to refer books which are listed in the bibliography section.

Acknowledgement

We are delighted to express our thanks to the carter center for the financial, material and moral support with out which this material wouldn't come to reality.

We are also glad to extend our heart felt appreciation for Ato Esayas Alemayehu, Ato Muluken Eyayu, Ato Wossen Tafere and Ato Dagnew Engidaw for their critical and constructive comments that are found to be highly essential for this lecture note preparation.

We are very happy to be members of the faculty of health sciences, Alemaya university for the fact that working with such faculty are really incomparable.

TABLE OF CONTENTS

Preface i
Acknowledgement iii
General Objectives vii
Chapter 1: Introduction to Graphic Communication 1
1.1. Drawing 1
1.1.1 Artistic Drawings 2
1.1.2. Technical Drawings 3
Chapter 2: Drawing Equipments and Their Use 11
2.1. Introduction 11
2.2. Important Drawing Equipments 11
Chapter 3: Lettering and Lines 22
3.1. Letter Styles 22
3.2. Technique Of Lettering 24
3.2.1. .Guide Lines 24
3.3. Spacing Of Letters 30
3.4. Lettering In Maps 31
3.5. Conventional Lines 31
Chapter 4: Geometric Construction 35
4.1. 1 Introduction 35
4.2. Geometric Nomeniclature 36
4.3. Techniques of Geometric Constructions 42
Chapter 5: Projection 66
5.1. Introduction 67
5.1.1. Isometric Drawing 68
5.1.2. Orthographic Or Multi View Projection 70
5.2. Theory Of Multi View Projections 72
5.2.1. Orthographic Projection 74
5.2.2. Classification of Surfaces and Lines in Orthographic Projections 82
5.2.3. Precedence of Lines 89
5.3. Pictorial Projections 90
5.3.1. Isometric Projection 94
5.3.2. Isometric Drawing 96
Chapter 6: Sectioning 101
6.1. Sectional Views............................ 101
6.2. How Sections Are Shown 106
6.3. Multsection Views 109
Chapter 7: Projection of Points, Lines and Planes 116
7.1. Introduction 117
7.2. Reference Planes 118
7.3. Projection of Point 119
7.4. Lines in Space 120
7.4.1. Classification Of Lines In Orthographic Projections 121
7.4.2 Orthographic Projection Of A Line 124
7.4.3. True Size (Shape) Of An Oblique Plane 146
Chapter 8: Dimensioning 149
8.1. Introduction 149
8.2. Definitions 150
8.3. Steps in Dimensioning 152
8.4. Where to Put Dimensions 153
Chapter 9: Mapping 159
9.1. Introduction 159
9.2. Definition 160
9.3. Purpose 161
9.4. Classification of Maps 162
9.5. Sketch Map 166
9.6. Materials Used In a Sketch Mapping For Field or Office Use 172
9.7. Procedures for Making a Sketch Map 172
Chapter 10: Building Drawing
176
10.1. Introduction 176
10.2. Important Terms Used In Building Drawing 177
10.3. Principles of Architecture 180
10.4. Basic Elements of Planning Residential Building 182
10.5. Principles of Planning Of Residential Building 175
10.6. Specification Used To Draw the Building Drawing 189
10.7. Methods of Making Line and Detailed Drawing 191
10.8. Tips to Draw Building Drawing 194
Chapter 11. Application of Engineering Drawing In Environmental Health Projects 206
Introduction 206
A. Sanitation Projects 207
B. Water Projects 227
Bibliography 231

GENERAL OBJECTIVES

This lecture notes will enable the students to:
I. Explain the concept of graphic communication, their type and their role in sanitary construction.
II. Familiarize with different drawing equipment, technical standards and procedures for construction of geometric figures.
III. Equipped with the skill that enables them to convert pictorial (3-D) drawings to orthographic (2-D) drawings and vice versa.
IV. Explain the principle and application of sectioning.
V. Well familiar with the purpose, procedures, materials and conventional symbols utilized to make sketch maps.

CHAPTER ONE
 INTRODUCTION TO GRAPHIC COMMUNICATION

Objectives:

At the end of this chapter students should be able to:

- Define graphic communication
- Mention types of drawing
- Explain the difference between different types of drawings
- Mention some of the applications of technical drawings

1.1 Drawing

A drawing is a graphic representation of an object, or a part of it, and is the result of creative thought by an engineer or technician. When one person sketches a rough map in giving direction to another, this is graphic communication. Graphic communication involves using visual materials to relate ideas. Drawings, photographs, slides, transparencies, and sketches are all forms of graphic communication. Any medium that uses a graphic image to aid in conveying a message, instructions, or an idea is involved in graphic communication.

One of the most widely used forms of graphic communication is the drawing.

Technically, it can be defined as "a graphic representation of an idea, a concept or an entity which actually or potentially exists in life. Drawing is one of the oldest forms of communicating, dating back even farther than verbal communication. The drawing itself is a way of communicating all necessary information about an abstract, such as an idea or concept or a graphic representation of some real entity, such as a machine part, house or tools.

There are two basic types of drawings: Artistic and Technical drawings.

1.1.1 Artistic Drawings

Artistic Drawings range in scope from the simplest line drawing to the most famous paintings. Regardless of their complexity, artistic drawings are used to express the feelings, beliefs, philosophies, and ideas of the artist.

In order to understand an artistic drawing, it is sometimes necessary to first understand the artist. Artists often take a subtle or abstract approach in communicating through their drawings, which in turn gives rise to various interpretations. (see figure 1.1)

Figure 1.1 Artistic drawings
(Source: Goetsch, Technical drawing $3^{\text {rd }}$ ed. USA: Delmar Publisher Inc., 1994)

1.1.2 Technical Drawings

The technical drawing, on the other hand, is not subtle, or abstract. It does not require an understanding of its creator, only an understanding of technical drawings.

A technical drawing is a means of clearly and concisely communicating all of the information necessary to transform an idea or a concept in to reality. Therefore, a technical drawing often contains more than just a graphic representation of its subject. It also contains dimensions, notes and specifications. (See figure 1.2)

Figure 1.2 Technical Drawings

A. Types of Technical Drawings

Technical drawings are based on the fundamental principles of projections. A projection is a drawing or representation of an entity on an imaginary plane or planes. This projection planes serves the same purpose in technical drawing as is served by the movie screen. A projection involves four components

1. The actual object that the drawing or projection represents
2. The eye of the viewer looking at the object
3. The imaginary projection plane
4. Imaginary lines of sight called Projectors

The two broad types of projections, both with several subclassifications, are parallel projection and perspective projection.

Parallel Projection

Parallel Projection is a type of projection where the line of sight or projectors are parallel and are perpendicular to the picture planes. It is subdivided in to the following three categories: Orthographic, Oblique and Axonometric Projections.

- Orthographic projections. are drawn as multi view drawings, which show flat representations of principal views of the subject.
- Oblique Projections: actually show the full size of one view.
- Axonometric Projections: are three-dimensional drawings, and are of three different varieties: Isometric, Dimetric and Trimetric.

TOP VIEW

FRONT VIEW

Figure 1.3 Orthographic multi view drawing

Figure 1.4 Oblique drawing

Figure 1.5 Axonometric drawing

Perspective Projection

Perspective projections are drawings which attempt to replicate what the human eye actually sees when it views an object. There are three types of perspective projections: Onepoint, Two-point and Three-point Projections.

Figure 1.6 Perspective drawing

B. Purpose of Technical Drawings

To appreciate the need for technical drawings, one must understand the design process. The design process is an orderly, systematic procedure used in accomplishing a needed design.

Any product that is to be manufactured, fabricated, assembled, constructed, built, or subjected to any other types of conversion process must first be designed. For example, a house must be designed before it can be built.

C. Application of Technical Drawing

Technical drawings are used in many different applications. They are needed in any setting, which involves design, and in any subsequent forms of conversion process. The most common applications of technical drawings can be found in the fields of manufacturing, engineering and construction.

For instance, Surveyors, civil engineers, sanitarians use technical drawings to document such works as the layout of a new subdivisions, or the marking of the boundaries for a piece of property. Contractors and construction personnel use technical drawings as their blue prints in converting architectural and engineering designs in to reality.

Figure 1.7 Technical drawing (architectural)

Review questions

1. Discuss the different types of drawing
2. Explain the different application of technical drawing
3. What is graphic communication?

CHAPTER TWO
 DRAWING EQUIPMENTS AND THEIR USE

Objectives:

At the end of this chapter students should be able to:

- List the main drawing equipments
- Discuss the use of different drawing equipments

2.1 Introduction

To record information on paper instruments and equipments are needed. Engineering drawing is entirely a graphic language hence instruments are essentially needed. Drawing must be clear, neat and legible in order to serve its purpose. Hence it is extremely important for engineers to have good speed, accuracy, legibility and neatness in the drawing work.

2.2 Important Drawing Equipments

All drawings are made by means of various instruments. The quality of drawing depends to a large extent on the quality, adjustment and care of the instruments.

i. Drawing Paper

Drawing paper is the paper, on which drawing is to be made.
All engineering drawings are made on sheets of paper of strictly defined sizes, which are set forth in the U.S.S.R standards. The use of standard size saves paper and ensures convenient storage of drawings. Now a day, A3 and A4 are the most commonly used paper sizes. The U.S.S.R standard establishes five preferred sizes for drawings as tabulated bellow:

Table 2.1 Description of the size of drawing paper

Size designation	11	12	22	24	44
Sheet dimensions in mm	297×210	297×420	594×420	594×841	$1,189 \times 841$
Corresponding designation of paper sheets according to the	A4	A3	A2	A1	A0
U.S.S.R Standard (for references)					

Figure 2.1 A4 and A3 standard papers

Title block is a rectangular frame that is located at the bottom of the sheet. It is recommended that space should be provided in all title blocks for such information as description of title of the drawing, dates, designer (drawer), and name of enterprise or educational institute, size (scale)

Sample for title block

TITLE	
DR.BY GUTEMA KETEMA	
CHECK.BY	
ASSIGN. NO.	
SCALE	
DATE 02/02/2003	

Figure 2.2 Sample Title block figure

ii. Triangles (setsquares)

They are used to construct the most common angles (i.e. 30°, $45^{\circ}, 60^{\circ}$) in technical drawings. The $45^{\circ} \times 45^{\circ}$ and $30^{\circ} \times 60^{\circ}$ triangles are the most commonly used for ordinary work. They are shown in the fig. 2.2 below.

Figure 2.3 triangles or set squares

iii. T- square

It is used primarily to draw horizontal lines and for guiding the triangles when drawing vertical and inclined lines. It is manipulated by sliding the working edge (inner face) of the head along the left edge of the board until the blade is in the required position.

Figure 2.4 T-square

iv. French curve

It is used to draw irregular curves that are not circle arcs. The shape varies according to the shape of irregular curve.

Axariment of fretin ury
Figure 2.5 French curves

v. Protractor

It is used for laying out and measuring angle.

Figure 2.6 Protractor

vi. Scale (ruler)

A number of kinds of scales are available for varied types of engineering design. Figure fig 2.7 Scales with beveled edges graduated in mm are usually used.

vii. Pencil

The student and professional man should be equipped with a selection of good, well-sharpened pencil with leads of various degrees of hardness such as: $9 \mathrm{H}, 8 \mathrm{H}, 7 \mathrm{H}$, and 6 H (hard); $5 \mathrm{H} \&$ 4 H (medium hard); 3 H and 2 H (medium); and $\mathrm{H} \& \mathrm{~F}$ (medium soft). The grade of pencil to be used for various purposes depends on the type of line desired, the kind of paper employed, and the humidity, which affects the surface of the
paper. Standards for line quality usually will govern the selection. For instance,

- 6H is used for light construction line.
- $\mathbf{4 H}$ is used for re-penciling light finished lines (dimension lines, center lines, and invisible object lines)
- 2H is used for visible object lines
- \mathbf{F} and \mathbf{H} are used for all lettering and freehand work.

Table 2.2. Grade of pencil (lead) and their application

TASK	LEAC:
COHSTRIISTION LINES	3H : zH
gulje LINES	311 ÊH
-ETIERIVI	$\mathrm{H}, \mathrm{P}, \mathrm{HB}$
CIMERSIICN LIVES	$2 \mathrm{H}, \mathrm{H}$
L三soefunes	2-, ${ }^{\text {2 }}$
HIDEEM Lines	EII, 1
CR9SS-ATCHING LINES	$2 \mathrm{H}, \mathrm{H}$
CENTEPLIPES	2H, ${ }^{\text {2 }}$
PHCNTJM LIVES	21, 1
S-ITCH LINES	2\%, 4
LiNK EHEAK LINCS	$2 \mathrm{H}, 4$
visible Lindes	H,F, HE
CLTTING FLANE LINES	H, r, (4)
EXTERISIOH LIVES	$2 \mathrm{H}, \mathrm{H}$
FREEHAND BEEAK LINES	H, \boldsymbol{F}, HP

viii. Compass

It is used to draw circles and arcs both in pencil and ink. It consists of two legs pivoted at the top. One leg is equipped with a steel needle attached with a screw, and other shorter leg is, provided with a socket for detachable inserts.

viiii. Divider

Used chiefly for transferring distances and occasionally for dividing spaces into equal parts. i.e. for dividing curved and straight lines into any number of equal parts, and for transferring measurements.

Figure 2.8 Compass and divider

X. Template

A template is a thin, flat piece of plastic containing various cutout shapes. It is designed to speed the work of the drafter and to make the finished drawing more accurate. Templates are available for drawing circles, ellipses, plumbing's, fixtures etc. Templates come in many sizes to fit the scale being used on the drawing. And it should be used wherever possible to increase accuracy and speed.

Drawing board is a board whose top surface is perfectly smooth and level on which the drawing paper is fastened.

Clinograph (Adjustable set square)-its two sides are fixed at 90° and the third side can be adjusted at any angle.

Rubber or eraser- extra lines or curves which are not required in the drawing are to be rubbed out or erased. Hence a rubber or eraser are required in the drawing work. Erasers are available in many degrees of hardness, size and shape.

Eraser shield -it is an important device to protect lines near those being erased. It is made up of thin metal plate in which gaps of different widths and lengths are cut.

Tracing paper - it is a thin transparent paper. Figures below it can be seen easily and traced out in pencil ink.

Drawing ink- it is used for making drawings in ink on tracing paper.

Review questions

1. Mention the main drawing equipments
2. Explain the use of different drawing equipments
3. Discuss the different type of pencils with their use

CHAPTER THREE
 LETTERING AND LINES

Objectives:

At the end of this chapter students should be able to:

- Write letters according to the standard
- Explain the different line types
- Mention the application of each line type in technical drawings

3.1 Letter Styles

Letter styles are generally classified as Gothic, Roman, Italic and Text. They were all made with speedball pens, and are therefore largely single-stroke letters. If the letters are drawn in outline and filled in, they are referred to as "filled- in" letters. The plainest and most legible style is the gothic from which our single-stroke engineering letters are derived. The term roman refers to any letter having wide down ward strokes and thin connecting strokes. Roman letters include old romans and modern roman, and may be vertical or inclined. Inclined letters are also referred to as italic, regardless of the letter style; text letters are often referred to as old English.

```
Classification of letter styles by division of groups
    ABCDEFGH GOTHIC ult letters having the
    abcdefgh a
    ABCDEFGH Roman ill letters hating
        dementary strokes 'accented' or
        consisting of heavy and liglet
        Innes, are classified as Roman
        C-Made with 5tyeCarD Sovolkol/ Avol
        Italic-1ll slanting letters are
                                    classified as Italics- These mas
                                    be further desighated as Roman-
                                    Italics, Gotric Italics or Terf Italic
            (1)NE-This Eerm includes all
                        sfyles of Old English. Gorman tent.
                        Bradley Eext or ofterg of various
                        Eracte mames - Text styles are too
                        illegible for commencial purposes
```


Figure 3.1 Classification of letter styles
Depending up on the spacing between words and thickness of strokes, letters may be classified as follows.

- Extended and Condensed Letters

To meet design or space requirements, letters may be narrower and spaced closer together, in which case they are called "Compresed" or "Condensed"letters. If the letters are wider than normal, they are referred to as "Extended"letters.

- Light Face and Bold Face Letters

Letters also vary as to the thickness of the stems or strokes. Letters having very thin stems are called Light Face Letters, while those having heavy stems are called Bold Face Letters.

3.2 Technique of Lettering

"Any normal person can learn to letter if he is persistent and intelligent in his efforts." While it is true that" Practice makes perfect," it must be understood that practice alone is not enough; it must be accompanied by continuous effort to improve.
There are three necessary steps in learning to letter:

1. Knowledge of the proportions and forms of the letters, and the order of the strokes.
2. Knowledge of composition- the spacing of the letters and words.
3. Persistent practice, with continuous effort to improve.

Guide Lines

Extremely light horizontal guidelines are necessary to regulate the height of letters. In addition, light vertical or inclined guidelines are needed to keep the letters uniformly vertical or inclined. Guidelines are absolutely essential for good lettering, and should be regarded as a welcome aid, not as an unnecessary requirement.

Figure 3.2 Guide lines
Make guidelines light, so that they can be erased after the lettering has been completed. Use a relatively hard pencil such as a 4 H to 6 H , with a long, sharp, conical point.

A. Guidelines for Capital Letters

On working drawings, capital letters are commonly made 3 mm high, with the space between lines of lettering from $3 / 4$ th to the full height of the letters. The vertical guidelines are not used to space the letters (as this should always be done by eye while lettering), but only to keep the letters uniformly vertical, and they should accordingly be drawn at random.

Figure 3.3 Guide lines for capital letters

A guideline for inclined capital letters is somewhat different. The spacing of horizontal guidelines is the same as for vertical capital lettering. The American Standard recommends slope of approximately 68.2^{0} with the horizontal and may be established by drawing a "sloped triangle", and drawing the guidelines at random with T-square and triangles.

Figure 3.4 Guide lines for inclined capital letters

B. Guidelines for Lower-Case Letters

Lower-case letters have four horizontal guidelines, called the cap line, waistline, and base line and drop line. Strokes of letters that extend up to the cap line are called ascenders, and those that extend down to the drop line, descenders. Since there are only five letters ($\boldsymbol{p}, \boldsymbol{q} \cdot \boldsymbol{g}, j, y$) that have descenders, the drop lines are little needed and are usually omitted. In spacing guidelines, space "a" may very from 3/5to $2 / 3$ of space "b".

The term single stoke or one stoke does not mean that the entire letter is made without lifting the pencil. But the width of the stroke is the width of the stem of the letter.

Single stoke lettering

The salient features of this type of lettering are:

- Greatest amount of lettering on drawings is done in a rapid single stroke letter i.e. either vertical, or inclined.
- The ability to letter and perfectly can be acquired only by continued and careful practice
- it is not a matter of artistic talent or event of dexterity in hand writing

Order of strokes

They are necessary to have legible and accurate letter styles. In the following description an alphabet of slightly extended vertical capitals has-been arranged in-group. Study the slope of each letter with the order and direction of the storks forming it. The proportion of height and width of various letters must be known carefully to letter them perfectly.

The I-H-T Group

- The letter I is The Foundation Stroke.
- The top of T is drawn first to the full width of the square and the stem is started accurately at its mid point.

The L-E-F Group

- The L is made in two strokes.
- The first two strokes of the E are the same for the L, the third or the upper stoke is lightly shorter than the lower and the last stroke is the third as long as the lower
- F has the same proportion as E

The V-A-K Group

- V is the same width as A, the A bridge is one third up from the bottom.
- The second stroke of K strikes stem one third up from the bottom and the third stroke branches from it.

The M-W Group

- are the widest letters
- M may be made in consecutive strokes of the two verticals as of N
- W is made with two V's

The O-Q-C-G Group

- The O families are made as full circles and made in two strokes with the left side a longer arc than the right.
- A large size C and G can be made more accurately with an extra stroke at the top.

The D- U-J Group

- The top and bottom stokes of D must be horizontal, fail line to observe this is a common fault with beginners
- U is formed by two parallel strokes to which the bottom stroke be added.
- J has the same construction as U, with the first stroke omitted.

The P-R-B Group

- The number of stokes depends up on the size of the letter.
- The middle line of P and R are on centerline of the vertical line.

Figure 3.5 Order of strokes for capital letters

Figure 3.6 Order of strokes for inclined capital letters

3.3 Spacing of Letters

Uniformity in spacing of letters is a matter of equalizing spaces by eye. The background area between letters, not the distance between them, should be approximately equal. Some combinations, such as LT and VA, may even have to be slightly overlapped to secure good spacing. In some cases the width of a letter may be decreased. For example, the lower stroke of the L may be shortened when followed by A.

Words are spaced well apart, but letters with in words should be spaced closely. Make each word a compact unit well separated from the adjacent words. For either upper case or lower-case lettering, make the spaces between words approximately equal to a capital O. Avoid spacing letters too far apart and words too close together.

3.4 Lettering in Maps

Letters are generally used on maps as follows:

- Vertical capital: name of states, countries, towns, capitals, titles of the map etc
- Vertical lower case: name of small towns, villages, post offices etc.
- Inclined capital: name of oceans, bays, gulfs, large lakes, rivers etc.
- Inclined lower case: name of rivers, creeks, small lakes, ponds, marshes and springs

3.5 Conventional Lines

Each line on a technical drawing has a definite meaning and is drawn in certain ways. There are certain conventional lines recommended by American Standard Association. According to the standard," three widths of line;, thick, medium, and thin are recommended... exact thickness may vary according to the size and type of drawing..."

There should also be a distinct contrast in the thickness of different kinds of lines, particularly between the thick lines and thin lines.

In technical drawings, make construction lines so light that they can barely be seen, with a hard sharp pencil such as 4 H to 6 H . For visible lines, hidden lines, and other "thick" lines use relatively soft pencils, such as F or H. All thin lines except construction line must be thin, but dark. They should be made with a sharp medium grad pencil, such as H or 2 H .

Figure 3.7 Conventional lines

Review Questions

1. Discuss the different types of lines
2. Explain the application of each line types in technical drawings

CHAPTER FOUR GEOMETRIC CONSTRUCTION

Objectives:

At the end of this chapter students should be able to:

- Define geometric nomenclatures like angles, lines etc
- Discuss the steps to construct different geometric figures like lines, arcs, polygon, ellipse etc

4.1 Introduction

Strict interpretation of geometric construction allows use of only the compass and an instrument for drawing straight lines, and with these, the geometer, following mathematical theory, accomplishes his solutions. In technical drawing, the principles of geometry are employed constantly, but instruments are not limited to the basic two as T-squares, triangles, scales, curves etc. are used to make constructions with speed and accuracy. Since there is continual application of geometric principles, the methods given in this chapter should be mastered thoroughly. It is assumed that students using this book understand the elements of plane geometry and will be able to apply their knowledge.

The constructions given here afford excellent practice in the use of instruments. Remember that the results you obtain will be only as accurate as your skill makes them. Take care in measuring and drawing so that your drawings will be accurate and professional in appearance.

4.2 GEOMETRIC NOMENICLATURE

A. POINTS IN SPACE

A point is an exact location in space or on a drawing surface. A point is actually represented on the drawing by a crisscross at its exact location. The exact point in space is where the two lines of the crisscross intersect. When a point is located on an existing line, a light, short dashed line or cross bar is placed on the line at the location of the exact point. Never represent a point on a drawing by a dot; except for sketching locations.

B. LINE

Lines are straight elements that have no width, but are infinite in length (magnitude), and they can be located by two points which are not on the same spot but fall along the line. Lines may be straight lines or curved lines.A straight line is the shortest distance between two points. It can be drawn in any direction. If a line is indefinite, and the ends are not fixed in length, the actual length is a matter of convenience. If the end points of a line are important, they must be marked by means
of small, mechanically drawn crossbars, as described by a pint in space.

Straight lines and curved lines are considered parallel if the shortest distance between them remains constant. The symbol used for parallel line is //. Lines, which are tangent and at 90° are considered perpendicular. The symbol for perpendicular line is \perp.

Figure 4.1 Points and lines

C. ANGLE

An angle is formed by the intersection of two lines. There are three major kinds of angles: right angels, acute angles and obtuse angles. The right angle is an angle of 90°, an acute angle is an angle less than 90°, and an obtuse angle is an angle more than 90°. A straight line is 180°. The symbol for an angle is < (singular) and <'s (Plural). To draw an angle, use the drafting machine, a triangle, or a protractor.

Figure 4.2 Angles

D. TRIANGLES

A triangle is a closed plane figure with three straight sides and their interior angles sum up exactly 180°. The various kinds of triangles: a right triangle, an equilateral triangle, an isosceles triangle, and an obtuse angled triangle.

Figure 4.3 Triangles

E. QUADRIALTERAL

It is a plane figure bounded by four straight sides. When opposite sides are parallel, the quadrilateral is also considered to be a parallelogram.

Figure 4.4 Quadrilaterals

F. POLYGON

A polygon is a closed plane figure with three or more straight sides. The most important of these polygons as they relate to drafting are probably the triangle with three sides, square with four sides, the hexagon with six sides, and the octagon with eight sides.

Figure 4.5 Polygons

G. CIRCLE

A circle is a closed curve with all points on the circle at the same distance from the center point. The major components of a circle are the diameter, the radius and circumference.

- The diameter of the circle is the straight distance from one outside curved surface through the center point to the opposite outside curved surface.
- The radius of a circle is the distance from the center point to the outside curved surface. The radius is half the diameter, and is used to set the compass when drawing a diameter.
- A central angle: is an angle formed by two radial lines from the center of the circle.
- A sector. is the area of a circle lying between two radial lines and the circumference.
- A quadrant. is a sector with a central angle of 90° and usually with one of the radial lines oriented horizontally.
- A chord is any straight line whose opposite ends terminate on the circumference of the circle.
- A segment. is the smaller portion of a circle separated by a chord.
- Concentric circles are two or more circles with a common center point.
- Eccentric circles are two or more circles with out a common center point.
- A semi circle is half of the circle.

Figure 4.6 Circle

H. SOLIDS

They are geometric figures bounded by plane surfaces. The surfaces are called faces, and if these are equal regular polygons, the solids are regular polyhedra

Figure 4.7 Solids

4.3 Techniques of Geometric constructions

To construct the above mentioned geometric figures, we have to know some principles and procedures of geometric construction. Thus, the remaining of this chapter is devoted to illustrate step-by-step geometric construction procedures used by drafters and technicians to develop various geometric forms.

A. How to Bisect a Line or an Arc

To bisect a line means to divide it in half or to find its center point. In the given process, a line will also be constructed at the exact center point at exactly 90°.

Given: Line A-B

Step 1: Set the compass approximately two-thirds of the length of line $A-B$ and swing an arc from point A.

Step 2: Using the exact same compass setting, swing an arc from point B.

Step 3: At the two intersections of these arcs, locate points D and E

Step 4: Draw a straight-line connecting point D with point E. Where this line intersects line $A-B$, it bisects line $A-B$. Line D-E is also perpendicular to line $A-B$ at the exact center point.

Figure 4.8 Example on how to bisect a line or arc

B. HOW TO DIVIDE A LINE IN TO Number of EQUAL PARTS

Given: Line A-B

Step 1: Draw a construction line $A C$ that starts at end A of given line $A B$. This new line is longer than the given line and makes an angle of not more than 30° with it.

Step 2: Find a scale that will approximately divide the line $A B$ in to the number of parts needed (11 in the example below), and mark these divisions on the line AC. There are now ' n ' equal divisions from A to D that lie on the line AC (11 in this example).

Step 3: Set the adjustable triangle to draw a construction line from point D to point B. Then draw construction lines through each of the remaining ' n - 1 ' divisions parallel to the first line $B D$ by sliding the triangle along the
straight edge. The original line $A B$ will now be accurately divided.

Divilite alin\%.

Figure 4.9 Example on how to divide a line in to a number of equal parts

C. How to Bisect an Angle

To bisect an angle means to divide it in half or to cut it in to two equal angles.

Given: Angle BAC

Step 1: Set the compass at any convenient radius and swing an arc from point A

Step 2: Locate points E and F on the legs of the angle, and swing two arcs of the same identical length from points E and F, respectively.

Step 3: Where these arcs intersect, locate point D. Draw a straight line from A to D. This line will bisect angle BAC and establish two equal angles: CAD and
BAD.

Figure 4.10 Example on how to bisect an angle

D. How to Draw an Arc or Circle (Radius) Through Three Given Points

Given: Three points in space at random: A, Band C.
Step 1: With straight line, lightly connect points A to B, and B to C ,

Step 2: Using the method outlined for bisecting a line, bisect lines $A-B$ and $B-C$

Step 3: Locate point X where the two extended bisectors meet. Point X is the exact center of the arc or circle.

Step 4: Place the point of the compass on point X and adjust the lead to any of the points A, B, or C (they are the same distance), and swing the circle. If all work is
done correctly, the arc or circle should pass through each point.

Figure 4.11 Example on how to draw an arc or circle

E. How to Draw a Line Parallel to a Straight Line at a Given Distance

Given: Line A-B, and a required distance to the parallel line.
Step 1: Set the compass at the required distance to the parallel line. Place the point of the compass at any location on the given line, and swing a light arc whose radius is the required distance.

Step 2: Adjust the straight edge of either a drafting machine or an adjusted triangle so that it line sup with line A-B, slide the straight edge up or down to the extreme high
point, which is the tangent point, of the arc, then draw the parallel line.

(B)

(C)

Figure 4.12 Example on how to draw parallel line

F. How to Draw a Line Parallel to a Line Curved Line at a Given Distance

Given: Curved line A-B, and a required distance to the parallel line,

Step 1: Set the compass at the required distance to the parallel line. Starting from either end of the curved
line, place the point of the compass on the given line, and swing a series of light arcs along the given line.

Step 2: using an irregular curve, draw a line along the extreme high points of the arcs.

(C)

Figure 4.13 Example on how to draw parallel curved line

G. How to Draw a Perpendicular Lines to a Line at a Point

Method 1

Given: Line A-B with point P on the same line.
Step 1: Using P as a center, make two arcs of equal radius or more continuous arc (R1) to intercept line A-B on either side of point P, at points S and T.

Step 2: Swing larger but equal arcs (R2) from each of points S and T to cross each other at point U.

Step 3: A line from P to U is perpendicular to line $A-B$ at point P

(A)

(C)

(B)

(D)

Figure 4.14 Example on how to draw a perpendicular line, to a point outside the line

H. How to Draw a Perpendicular to a Line at a Point

Method 2

Given: Line $A-B$ with point P on the line.
Step 1: Swing an arc of any convenient radius whose center O is at any convenient location NOT on line $A-B$, but positioned to make the arc cross line $A-B$ at points P and Q

Step 2: A line from point Q through center O intercepts the opposite side of the arc at point R

Step 3: Line R-P is perpendicular to line A-B (A right angle has been inscribed in asemi circle)

Figure 4.15 Example on how to draw a perpendicular line, to a point on the line

I. How to Draw a Perpendicular to a line from a Point Not on the Line

Given: Line A-B and point P
Step 1: Using P as a center, swing an arc (R1) to intercept line $A-B$ at points G and H.

Step 2: Swing larger, but equal length arcs (R2) from each of the points G and H to intercept each other at point J .

Step 3: Line $P-J$ is perpendicular to line $A-B$

Figure 4.16 Example on how to draw a perpendicular line, to a point outside the line

