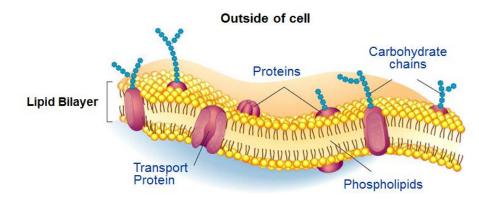

Cellular transport mechanisms

About cell membranes


- 1. All cells have a cell membrane.
- 2. Functions: Controls what enters and exits the cell to maintain an internal balance called **homeostasis**.
- 3. Provides protection and support for the cell structure of the cell membrane.

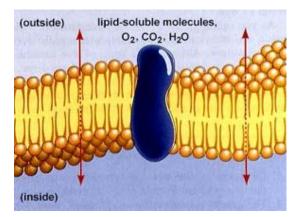
Lipid Bilayer: two layers of phospholipids

- a. The phosphate head is *polar* (water-loving).
- b. Fatty acid tails are non-polar (water-fearing).
- c. Proteins embedded in the membrane.
- 4. Cell membranes have pores (holes) in it
 - a. Selectively permeable: Allows some molecules in and keeps other molecules out.
 - b. The structure helps it be selective.

Structure of the cell membrane

Inside of cell (cytoplasm)

Types of cellular transport

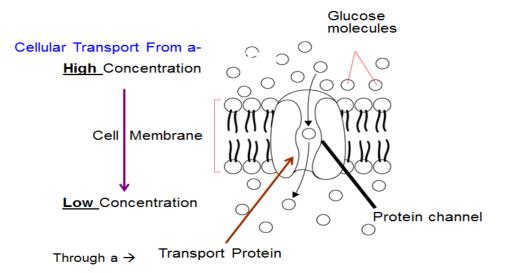

There are two ways in which substances can enter or leave a cell:

- 1. Passive transport: Cell doesn't use energy.
 - Diffusion

- Facilitated diffusion
- Osmosis
- 2. Active transport: Cell does use energy.
 - Protein pumps
 - Endocytosis
 - Exocytosis

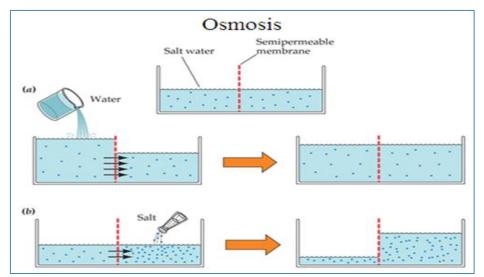
A. Passive transport mechanisms

- The cell uses no energy.
- Molecules move randomly.
- Molecules spread out from an area of high concentration to an area of low concentration (High→Low).
- Three types:
 - 1) Diffusion
 - 2) Facilitative diffusion: Diffusion with the help of transport proteins.
 - 3) Osmosis: Diffusion of water.
- **1. Diffusion:** Random movement of particles from an area of high concentration to an area of low concentration (High to Low).
 - Diffusion continues until all molecules are evenly spaced (equilibrium is reached) Note: Molecules will still move around but stay spread out.



Diffusion through a plasma membrane

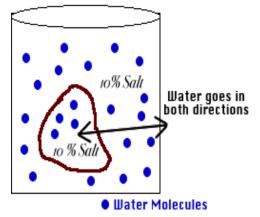
Equilibrium


- Diffusion stops at equilibrium (when the concentrations across a membrane are equal).
- The movement of molecules continues at equilibrium but the # of molecules moving across the membrane remains the same.
- The rate of transport is dependent on:
 - 1. If the material is solid, liquid, or gas.
 - 2. The size of the molecules.
 - 3. Temperature

- Examples of molecules that can diffuse through the bilayer: carbon dioxide, oxygen, water but very, very slowly.
- 2. Facilitated diffusion: Diffusion of specific particles through transport proteins found in the membrane.
 - a. Transport proteins are specific they "select" only certain molecules to cross the membrane.
 - b. Transports larger or charged molecules.
 - \circ Particles always move with (down) a concentration gradient.
 - o Uses transport/channel proteins.
 - Passive transport.
 - Usually for specific molecules such as glucose.
 - Facilitated diffusion stops at equilibrium.

3. Osmosis: Diffusion of water through a selectively permeable membrane. Water molecules move from a higher concentration of **water** to a lower concentration of **water**.

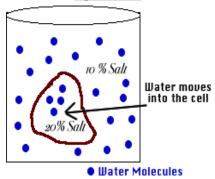
Water will move to where there is a greater amount of solute because there is less water there


3.1. Isotonic solution

Isotonic: The concentration of solutes in the solution is equal to the concentration of solutes inside the cell.

<u>Result</u>: Water moves equally in both directions and the cell remains the same size! (Dynamic Equilibrium)

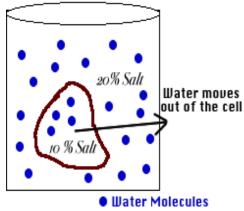
Solution is **Isotonic**


3.2. Hypotonic solution

Hypotonic: The solution has a lower concentration of solutes and a higher concentration of water than inside the cell (Low solute; High water).

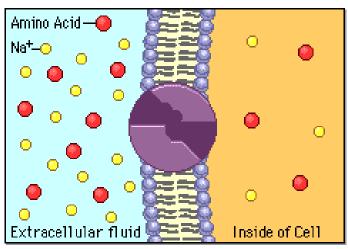
Result: Water moves from the solution to inside the cell): Cell Swells and bursts open (cytolysis)!

Solution is <u>Hypotonic</u>


3.3. Hypertonic solution

Hypertonic: The solution has a higher concentration of solutes and a lower concentration of water than inside the cell (High solute; Low water).

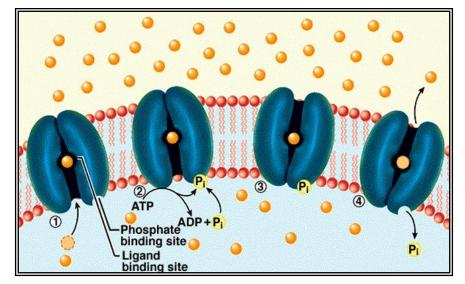
<u>Result</u>: Water moves from inside the cell into the solution: Cell shrinks (*Plasmolysis*)!



Solution is <u>Hypertonic</u>

B. Active transport mechanisms

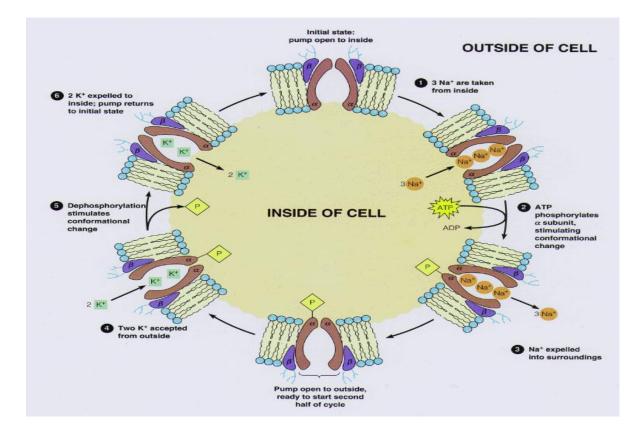
- The cell uses energy in the form of ATP. Active Transport: requires Capable of moving solute particles against the conc. gradient (from low conc. to high conc.)
 - Uses transport/carrier proteins (protein pumps) embedded in the plasma membrane.
 - Carrier proteins are specific for the molecules that they allow through. The carrier protein changes shape which requires energy (ATP).
- Three Types:
- a. Protein Pumps: Transport proteins that require energy to do work.
 - Example: Sodium / Potassium pumps are important in nerve responses.



Protein changes shape to move molecules: this requires energy!

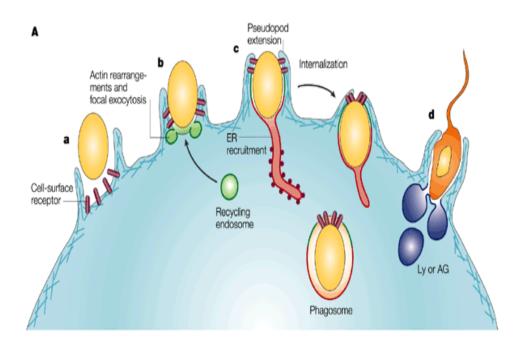
How does this happen?

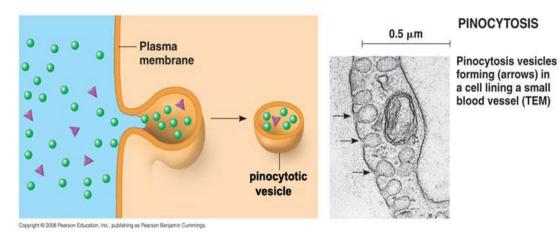
Protein Pumps


- Solute binds to the protein
- Mitochondria provide energy that changes the shape of the protein
- Change in shape allows solute to be moved across the membrane
- System resets

Operation of the Sodium Potassium Pump

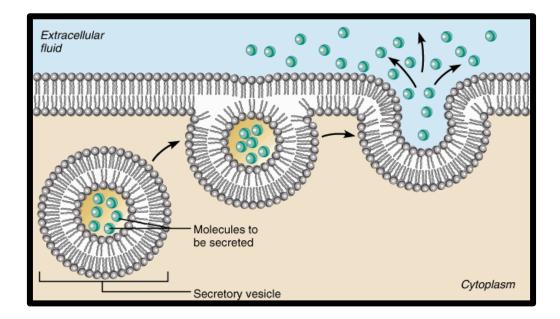
- 1. Three Na^+ in the cytosol bind to the pump protein.
- 2. Na⁺ binding triggers the splitting of ATP into ADP plus a phosphate group which attaches to the pump protein. This causes a change in the shape of the pump protein.
- 3. 3 Na^+ are expelled into the extracellular fluid.
- 4. The changed shape allows $2 K^+$ in the extracellular fluid to bind to the protein.
- 5. The binding of the K⁺ causes the phosphate group to be released which causes the pump protein to return to its original shape.
- 6. As the pump protein returns to its original shape, it releases the 2 K^+ into the cytosol.


The pump protein is then ready to bind Na⁺ and the cycle can repeat



- b. **Endocytosis:** a process of taking material into the cell by means of infoldings, or pockets, of the cell membrane (usually putting them into a vacuole).
 - Phagocytosis -"Cell eating"
 - Nonspecific molecules
 - Intake of solids
 - Pinocytosis –" Cell Drinking"
 - Nonspecific molecules
 - Intake of small droplets of liquid

Phagocytosis


- Phagocytosis occurs only in special cells called phagocytes.
- They are specialized cells used to engulf and destroy bacterial and other foreign substances.
- These cells include certain white blood cells and macrophages.
- Phagocytosis is one of the body's defense mechanisms against disease.
- Large solid particles (like whole cells) are taken in by the cell.
- The particle binds to the plasma membrane receptor, the cell extends projections called pseudopods that surround the particle, and then the membranes fuse to create a vesicle in the cytoplasm.
- Any undigested materials remain indefinitely in a vesicle called a residual body. Cells take up vesicles containing tiny droplets of extracellular fluid and any solutes dissolved in that fluid.
- The vesicle detaches from the membrane and enters the cytosol.
- The vesicle fuses with a lysosome where enzymes digest the solutes into smaller molecules.

c. Exocytosis

- Results in secretion materials exiting the cell.
- Secretory cells give off digestive enzymes, hormones, mucus, or other secretions.
- Nerve cells give off neurotransmitters. Vesicle containing the substance to be secreted forms in the cytosol fuses with the plasma membrane then releases the contents into the extracellular fluid.

