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Abstract

As computer are more adept at manipulating numbers than at recognizing pictures, it is
standard practice to communicate the specification of a graph to a computer in matrix

form. In work we study some types of matrices associated with a graph, also we find
some properties of this matrices.
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INTRODUCTION

Since a graph is completely determined by specifying either it is adjacency structure,
these specifications provide far more efficient ways of representing a large or

complicated graph than a pictorial representation.

Graph theory is an applied branch of the mathematics which deals the problems, with
the help of graphs. There are many applications of graph theory to a wide variety of
subjects which include operations Research, Physics, Chemistry, Economics, Genetics,
Sociology, Computer Science, Engineering Mechanical Engineering and the other

branches of science.

Many of the early concepts and theorems of graph theory came about quite indirectly,
often from recreational mathematics, through puzzles, or games or problems that, as
were seen later, could be phrased in terms of graphs. The very first of these was a
problem called the Konigsberg Bridge Problem, which was not only solved by one of
the most famous mathematicians of all time but whose solution is considered the origin

of graph theory and would lead to an important class of graphs.
Our work consists of two chapters:
Chapter one we present fundamental concepts of graphs.

Chapter two we present some types of matrices.



CHAPTER ONE

Basic Notations and Definitions

Definition 1.1[ (Vasudev, 2006)]: A graph G consists of a set of objects V =
{v,,v,,vs,....} Called vertices (also called points or nodes) and other set E =

{eq, €5, €3, .... } Whose elements are called edges (also called lines or arcs).

The set V(G) is called the vertex set of G and E(G) is the edge set, usually the graph is
denoted by G = (V, E).

Definition 1.2[ (Zhang, 2012)] The number of vertices in G is often called order of G.
Definition 1.3[ (Zhang, 2012)]: The number of edges in G is often called size of G.

Definition 1.4[ (Wilson, 1972)]: The degree of a vertex is the number of edges which

have that vertex set as an end point.

Definition 1.5[ (Vasudev, 2006)]: An edge of a graph that joins a node to itself is called

loop or self-loop.

Definition 1.6[ (Wilson, 1972)]: A graph in which any two vertices are connected by a
path is called a connected graph.

Definition 1.7[ (Vasudev, 2006)]: A graph with finite number of vertices as well as a

finite number of edges is called a finite graph.

Definition 1.8[ (Zhang, 2012)]: A multigraph M consists of a finite nonempty set V of
vertices and a set E of edges, where every two vertices of M are joined by a finite
number of edges. If two or more edges join the same pair of distinct vertices, then these

edges are called parallel edge or multigraph.
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Definition 1.9[ (Zhang, 2012)]: A graph H is called a subgraph of a graph G, written
HcG,ifV (H)cV (G)and E (H) c E (G).

Definition 1.10[ (Zhang, 2012)]: If a subgraph of a graph G has the same vertex set as
G, then it is a spanning subgraph of G.

Definition 1.11] (Biggs, 1985)]: A walk in a graph G is a sequence of vertices
V1, Vs, Vs, ..., U, SUCh that v;and e; . are adjacent (1 < i < k — 1), if all it is vertices are

distinct, a walk is called a path.

Definition 1.12[ (Gray Chartrand & Linda Lesniak& Ping Zhang, 2016) (G. Chartrand
& L.Lesniak, 1996)]: A walk in a graph G in which no edge is repeated is a trail in G.

Definition 1.13[ (Biggs, 1985)]: A walk v,, v, ...., v,,; Whose vertices are all distinct

except that v; = v, is called cycle.

Definition 1.14[ (Lesniak, 1996)]: For a connected graph G, we define the
distance d(u, v) between two vertices u and v as the minimum of the lengths of the u —

v paths of G.

Definition 1.15[ (Lesniak, 1996)]: A vertex u is said to detour dominate a vertex v if

u = v or u is a detour neighbor of v.
Definition 1.16[ (Bapat, 2010)]: An m x n matrix is called a square matrix if m = n.

Definition 1.17[ (Bapat, 2010)]: Operations of matrix addition, scalar multiplication and

matrix multiplication are basic and will not be recalled here.
The transpose of the m X n matrix A is denoted by A’

Definition 1.18[ (Bapat, 2010)]: A square matrix A is called symmetricif A = A’



CHAPTER TWO

Some Types of Matrices

1. Adjacency matrix:[(Ray, 2013)]

The adjacency matrix of a graph G with n vertices and no parallel edge is an n by n

symmetric binary matrix X = (xif)nxn defined over ring of integer such that

_ {1 ,if there is an edge between ith and jth vertices
*ii =0 ,if there is no edge between them.

Example 2.1 Consider the graph

Yaval
/

Vy Ve
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Figure 2.1 the graph G

The adjacency matrix of a graph G is



Vi v, V3 V4 Vs vy v, Vg

mr00 1 1 1 0 0 0 0
211. 0 1 0 0 0 0 1
11 1.0 0 0 0 1 1
Xij= 411 0 0 0 1 1 0 O
s 0001 00 0 O
““1o 0 01 0 0 1 0
;’700100100
¢ 1lo 1.1 0 0 0 0 o

The adajcency matrix contains only two types of elements, Oand 1.

This clearly is a binary matrix or a (0,1)-matrix.

We have the following observation about the adjacency matrix X (G) of a graph G.

a. The entries along the principle diagonal of X(G) are all zeros if and only if
the graph has no self-loops.

b. If the graph has no self-loops, the degree of a vertex equals the number of
ones in the corresponding row or column of X(G).

c. The X(G) is square matrix and it is a symmetric.



2. The edge adjacency matrix:[ (Anon., n.d.)]

The edge adjacency matrix denoted by A€, of an edge labeled connected
graph G is a square EXE matrix which is determined by the adjacencies

of edges

G {1 ,if edge i and j are adjacent
Jlo otherewise.

Example 2.2 Consider the graphs G

(%] e,

es €6 €g

ey €z

173 63 Uy
Figure 2.2 the graph G

The edge adjacency matrix of a graph G is
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The edge adacency matrix contains only two types of elements, Oand 1.

This clearly is a binary matrix or a (0,1)-matrix.

We have the following observation about the edge adjacency matrix E(G) of a graph G.

a. The A° matrix is squre and symmetric matrix

b. The entries along the principle diagonal of A€ are all zeros

3. Incident matrix:[(Ray, 2013)]

Let G be a graph with n vertices, e edges, and no self-loop, we define a matrix A=
(aij) nxe Where n rows correspond to the n vertices and e the columns correspond to

the e edges, as follows:

2 _{1, if jth edge e; is incident on ith vertex v;
Y 0,otherewise

This matrix A is called incidence matrix of G. Sometimes it is written as A(G)



Example 2.3 Consider the graphs given

€7

Uy

€s
]

€;

Us

Figure 2.3 the graph G

The incidence matrix of a graph G is

(%
. b, [L 1000 0 0
i Jloo 11011
10 0 0 0 1 1 1
11010 0 0 0
“1o0 101100

The incidence matrix contains only two types of elements, Oand 1.
This clearly is a binary matrix or a (0,1)-matrix.
We have the following observation about the adjacency matrix X(G) of a graph G.

a. Since every edge is incident on exactly two vertices, each column of | has exactly
two ones.
b. The number of ones in each row equals the degree of the corresponding vertex.
8



. Cycle matrix:[(Ray, 2013)]

Let the number of different circuits in a graph G be k and the number of edges in
G be e .Then a circuit matrix B= (bjj) «xe IS @ binary matrix defined where k rows
correspond to the k circuits and e the columns correspond to the e edges, as

follows:

B = {1, if ith circut includes jth edge
U 7|0, otherewise.

This matrix B is called cycle matrix of G, and written as B(G).

Example 2.4 Consider the given graph G

Us
€4
\vl e, Uy
€2
€3 €5 e,
Ve
V3 €6 Uy
Figure 2.4 the graph G eg

The graph G has four different cycle

ki={es, e;,es}, ka={ey e3,e5} , ks={e;, e3,e5,66} , ky={e;, eg}



The cycle matrix of a graph G is

€ €3 e, es eg e; eg

k4
. k, 1 1.0 0 1 0 0 0
Y ks 10 1 1. 0 0 1 0 O
kL |1 01 0 1 1 0 O
0O 000 0 0 1 1

The cycle matrix contains only two types of elements, Oand 1.

This clearly is a binary matrix or a (0,1)-matrix.

We have the following observation regarding the cycle matrix B(G) of a graph G.

a. A column of all zeros corresponds to a non cycle edge, that is, an edge which does
not belong to any cycle.
b. The number of ones in a row is equal to the number of edges in the corresponding

cycle.
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5. Path matrix:[ (Bapat, 2010)]
Let G be a graph with vertex set V(G) = {1,2, ....,n} and the edge set E(G) =
{eq, ey, ...,em}. Given a path P in G, the incidence vector of P is an mx1 vector
defined as follows. The entries of the vector are indexed by E (G). if ej ¢ E(G)
then the jth element of the vector is O if the path does not contain e; .
If the path contains e; then the entry is 1 or -1, according as the direction of the
path agrees or disagree, respectively, with e; . where p rows correspond to the p

paths and e the columns correspond to the e edges.

Example 2.5 Consider the graph G

2
€;

U3

33 e5

Us

Figure 2.5 the graph G

The different paths between the vertices v, and v, are

p1={ez es}, p2={es €4}, p3={es, €5, €6}
The path matrix for v, and v, is given by

er € e3 €, €g €g
P1 [0 1 0 1 0 O]

2|0 0 1 1 0 O
10 0 1 0 1 1
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The path matrix contains only two types of elements, Oand 1.
This clearly is a binary matrix or a (0,1)-matrix.
We have the following observation about the path matrix.

a. A column of all zeros corresponds to an edge that does not lie in any path between
u and v.

b. A column of all zeros corresponds to an edge that lies in every path between u
and v.

c. There is no row with all zeros.

6. Detour Matrix:[ (Ali Reza Ashrafi & Modjtaba Ghorbani & Maryam jalali, 4
december 2008 )]

Let G be a graph the matrix DD = [dd,;], in which dd;; is defined as the length

of the longest path between vertices iand j is called the detour matrix of G.

Example 2.6 Consider the graph G

Us

U3

)

Figure 2.6 the graph of G
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The detour matrix of a graph G is

v, 0 2 5 2 3 3

dd;;= Vs 2 01 3 2 3
v, 5 1 0 4 3 2

ve |2 2 4 0 3 2

vé 4 3 4 3 0 3

4 3 4 2 3 0

We have the following observation about the detour matrix.

a. The entries along the principle diagonal of DD (G) are all zeros.

b. The DD(G) is square matrix and it is a symmetric.

C. The detour matrix of complete graph has a simple form, that’s mean, all off-
diagonal elements are equal to the degree of a vertex, while the diagonal elements

are, of course, equal to zero.
7. Degree Matrix [ (Ray, 2013)]

The degree matrix of a graph is a diagonal matrix where the rows and columns are
indexed by the set of vertices (in the same order), and each diagonal entry gives
the degree of the corresponding vertex.

Where V(G)={v1, Uy, een) vp} :

degv; i=j

D(G)=[d;] with  d;;= L
pXD 0 [ # ]

13



Example 2.7 Consider the graph G

V3 v,

%1

)
Figure 2.7 the graph G ’e Ve
The degree matrix of a graph G is

Vi V2 V3 vy Vs Vg Uy
300 0 0 0 0
~ 103 000 0 0
. 0 0 3 0 0 0 O
»n [0 00 4 00 0
s |00 00 400
v 0O 0 0 0 0 1 O
“"lo o 0o 0o 0 0 o

We have the following observation about the degree matrix.

a. The entries along the principle diagonal of D(G) are not all zero it is equal to a
number of edge incident on vertex.

b. All column and row of matrix are zero except main diagonal.
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