

زانكوّى سهلاحهددين - هـوليّر
Salahaddin University-Erbil

Binary Operations on Graph Theory

Research project

Submitted to the department of (Mathematics) in partial fulfillment of the requirements for the degree of BSc. in (Graph Theory)

By:

Razhan Osman raza

Supervised by:
L. Ivan Dler Ali

APIRL-2023

Certification of the Supervisors

I certify that this report was prepared under my supervision at the Department of Mathematics / College of Education / Salahaddin University-Erbil in partial fulfillment of the requirements for the degree of Bachelor of philosophy of Science in Mathematics.

Signature:
Supervisor: Lecturer. Ivan Dler Ali
Scientific grade: Lecturer
Date: / 4 /2023

In view of the available recommendations, I forward this report for debate by the examining committee.

Signature:
Name: Dr. Rashad Rashid Haji

Scientific grade: Assistant Professor
Chairman of the Mathematics Department
Date: / 4 /2022

Acknowledgment

To
> My God who gave me everything.
> My supervisor, Lecturer Ivan
> To Salahaddin University College of Education Mathematics Department.
$>$ All the staff of the department
$>$ The noble spirits of my Parents.

Razhan Osman raza

Abstract

There are many ways of combining graphs to produce new graphs. In this work some operation containing, union, join, some kind of product, disjunction, and symmetric difference of graph will be present.

CONTENTS

ContentsPageSupervisor Certification I
Acknowledgment IV
Abstract V
List of Figures VI
Introduction (1)
Chapter one (2-4)
Basic Notations and Definitions
Chapter two(5-16)
Some Operations in Graph Theory
2.1 Some common binary operation in graph theory(5-11)
2.2 Some properties of operation in graph theory(12-16)
References (17)
Abstract in Kurdish A

List of Figures

List of Figures	Page
The union of a graphs	$\mathbf{5}$
The join of a graphs	$\mathbf{6}$
The join of a graphs	$\mathbf{6}$
The box product of a graphs	$\mathbf{7}$
The box product of a graphs	$\mathbf{7}$
The tensor product of a graphs	$\mathbf{8}$
The disjunction of a graphs	$\mathbf{9}$
The strong product of graphs	$\mathbf{1 0}$
The composition product of a graphs	$\mathbf{1 1}$
The symmetric difference of a graphs	$\mathbf{1 4}$
The associative of graphs	$\mathbf{1 5}$
The commutative of graphs	$\mathbf{1 6}$
The non-commutative of graphs	

Introduction

Graph theory is a branch of discrete mathematics. Graph theory is the study of graphs which are mathematical structures used to model pair wise relation between objects. A graph is made up of vertices V (nodes) and edges E (lines) that connect them. A graph is an ordered pair $G=(V, E)$ consisting a set of vertices V with a set of edges E .

Graph theory is originated with the problem of Koinsberg Bridge in 1735. This problem escort to the concept of Eulerian Graph. Euler studied the problem Koinsberg Bridge and established a structure to resolve the problem called Eulerian graph.

The operation of adding and deleting vertices and edges of graphs are regarded as primary operations, because they are the foundation for other operations, which many be called secondary operations.

Our work consists of two chapters:
Chapter one we present fundamental concepts of graphs.
Chapter two consists of two sections in section one we present some type of operations and in section two we present some properties of these operations.

Chapter One

Some basic concept in graph theory

Definition 1.1[(Chartrand, Lesniak, \& Zhang, 2016)]A graph G consists of a finite nonempty set V of objects called vertices (the singular is vertex) and a set E of 2element subsets of V called edges. The sets V and E are the vertex set and edge set of G, respectively. So a graph G is a pair (actually an ordered pair) of two sets V and E. For this reason, some write $G=(V, E)$. At times, it is useful to write $V(G)$ and $E(G)$ rather than V and E to emphasize that these are the vertex and edge sets of a particular graph G. Although G is the common symbol to use for a graph, we also use F and H, as well as $G^{\prime}, G^{\prime \prime}$ and G_{1}, G_{2}, etc. Vertices are sometimes called points or nodes and edges are sometimes called lines.

Definition1.2[(Chartrand, Lesniak, \& Zhang, 2016)]If $u v$ is an edge of G, then u and v are said to be adjacent in G.

Definition 1.3[(Chartrand, Lesniak, \& Zhang, 2016)] The vertex u and the edge $u v$ are said to be incident with each to other.

Definition 1.4[(Chartrand, Lesniak, \& Zhang, 2016)]The number of vertices in G is often called the order of G, while the number of edges is its size. Since the vertex set of every graph is nonempty, the order of every graph is at least 1.

Definition 1.5[(Chartrand \& Zhang, 2012)]An edge having the same vertex as both of its end vertices is called a self-loop (or simply a loop).

Definition1.6[(Chartrand \& Zhang, 2012)] Multigraph M consists of a finite nonempty set V of vertices and a set E of edges, where every two vertices of M are joined by a finite number of edges (possibly zero). If two or more edges join the same pair of (distinct) vertices, then these edges are called parallel edges.

Definition1.7[(Chartrand \& Zhang, 2012)] A graph, that has neither self-loops nor parallel edges, is called a simple graph.

Definition1.8[(Chartrand \& Zhang, 2012)]A graph with a finite number of vertices as well as finite number of edges is called a finite graph; otherwise it is an infinite graph.

Definition1.9[(Chartrand, Lesniak, \& Zhang, 2016)]The degree of a vertex v in a graph G is the number of edges incident with v and is denoted by $\operatorname{deg}_{G} v$ or simply by $\operatorname{deg} v$.

Definition 1.10[(Chartrand, Lesniak, \& Zhang, 2016)]A graph H is called a subgraph of a graph G, written $H \subseteq G$, if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.We also say that G contains H as a subgraph.

Definition 1.11[(Chartrand \& Zhang, 2012)] $u-v$ walk W in G is a sequence of vertices in G, beginning with u and ending at v such that consecutive vertices in the sequence are adjacent, that is, we can express W as $W=\left(u=v_{1}, v_{2}, \ldots, v_{k}=\right.$ v) where $k \geq 0$ and v_{i} and v_{i+1} are adjacent for $i=0,1,2, \ldots, k-1$

Definition 1.12[(Chartrand, Lesniak, \& Zhang, 2016)]A $u-v$ walk in a graph in which no vertices are repeated is a $u-v$ path.

Definition 1.13[(Chartrand \& Zhang, 2012)]If G contains a $u-v$ path, then u and v are said to be connected and u is connected to v (and v is connected to u).

Definition 1.14[(Chartrand, Lesniak, \& Zhang, 2016)]A graph G is complete if every two distinct vertices of G are adjacent. A complete graph of order n is denoted by K_{n}.

Definition 1.15[(Chartrand, Lesniak, \& Zhang, 2016)]A graph G is bipartite if $V(G)$ can be partitioned into two sets U and W (called partite sets) so that every edges of G joins a vertex of U and a vertex of W.

Definition 1.16[(Chartrand, Lesniak, \& Zhang, 2016)] A nontrivial closed path is called a cycle.

Definition 1.17[(Ivan \& Herish , 2017)] wheel w_{n} for $n \geq 4$, is a graph of order n consisting of a cycle c_{n-1} together with a vertex adjacent to every vertex of c_{n-1}.

Chapter Two
 Binary operation

2.1.Some Common Binary Operation in Graph Theory

In this section we describe some common binary operations defined in graph theory. In the following definitions, we assume that G_{1} and G_{2} are two graphs with disjoint vertex sets.

1:union (C.vasudev, 2006)
The union $G=G_{1} \cup G_{2}$ of graphs G_{1} and G_{2} with disjoint point sets V_{1} and V_{2} and edge sets E_{1} and E_{2} is the graph with $V=V_{1} \cup V_{2}$ and $E=E_{1} \cup E_{2}$.

Figure 2.1. The Union of graphs

2 Join[(C.vasudev, 2006)]
If the graph G_{1} and G_{2} such that $V\left(G_{1}\right) \cup V\left(G_{2}\right)=\varnothing$, then the sum $G_{1}+G_{2}$ is defined as the graph whose vertex set is $V\left(G_{1}\right)+V\left(G_{2}\right)$ and the edge set is consisting those edges, which are in G_{1} and in G_{2} and the edges obtained by joining each vertex of G_{1} to each vertex of G_{2}. That's mean
$V(G)=V\left(G_{1}\right)+V\left(G_{2}\right)$
$E(G)=E\left(G_{1}\right)+E\left(G_{2}\right) \cup\left\{u v ; u \in V\left(G_{1}, v \in V\left(G_{2}\right)\right\}\right.$

Example 2.2.The join of two graphs $k_{1}+C_{6}=W_{7}$ when k_{1} is complete graph, C_{6} is a cycle and W_{7} is a wheel.

Figure 2.2. The join of graphs

Example2.3. The join of k_{1} and P_{n} is F_{n} Where k_{1} is complete with order $1, P_{n}$ is path with order n and F_{n} is Fan graph with order n.

Figure 2.3. The join of graphs

3 Box product[(C.vasudev, 2006)]
$G=G_{1} \llbracket G_{2}$
$V(G)=V\left(G_{1}\right) \times V\left(G_{2}\right)$
$E(G)$ if $\left(u_{1}, u_{2}\right)$ adjacent $\left(v_{1}, v_{2}\right)$ then $u_{1}=v_{1}$ and u_{2} adjacent v_{2} $\in E\left(G_{2}\right)$ OR $u_{2}=v_{2}$ and u_{1} adjacent $v_{1} \in E\left(G_{1}\right)$

Figure 2.4. The box product of graphs
2. The box product of k_{2} and P_{n} graph is a ladder graph L_{n} :

Figure 2.5. The box product of graphs

4. Tensor Product[(Kiran , 2017)]

The tensor product $G_{1} \times G_{2}$ of graph G_{1} and G_{2} is a graph such that
1.The vertex set of $G_{1} \times G_{2}$ is the box product $V\left(G_{1}\right) \times V\left(G_{2}\right)$.
2. Distance vertices (u, u) and (v, v) are adjacent in $G_{1} \times G_{2}$ if and only if

- u is adjacent to v and
- u is adjacent to \dot{v}

Figure 2.6. The tensor product of graphs

The tensor product is also called
$>$ Direct product
> Categorical product
> Relational product
> Cardinal product
> Kronecker product
5.The disjjuction [(Chartrand, Lesniak, \& Zhang, 2016)]
$G=G_{1} V G_{2}$
$\mathrm{V}(\mathrm{G})=\mathrm{V}\left(G_{1}\right) \times V\left(G_{2}\right)$
$\mathrm{E}(\mathrm{G})=u_{1} u_{2} \in E\left(G_{1}\right)$
Or $v_{1} v_{2} \in E\left(G_{2}\right)$

6. Strong Product[(Kiran , 2017)]

The strong product $G=G_{1} \otimes G_{2}$ of graphs G_{1} and G_{2} is a graphs such that

1. The vertex set of $G_{1} \otimes G_{2}$ is the box product $V\left(G_{1}\right) \times V\left(G_{2}\right)$.
2. Distance vertices (u, u) and (v, v) are adjacent in $G_{1} \otimes G_{2}$ if and only if

- $u=v$ and u is adjacent to $v ́$ or
- $\dot{u}=\dot{v}$ and u is adjacent to v or
- u is adjacent to v and u is adjacent to v.

It is the union of box product and tensor product.

Figure 2.7. The strong product of graphs

The strong product is also called
$>$ Normal product
> AND product
6. Composition Product[(Kiran , 2017)]

The composition product $G=G_{1}\left[G_{2}\right]$ of a graphs G_{1} and G_{2} with disjoint vertex sets V_{1} and V_{2} and edge set E_{1} and E_{2} is the graph with vertex set $V_{1} \times V_{2}$ and $u=\left(u_{1}, v_{1}\right)$ is adjacent with $v=\left(u_{2}, v_{2}\right)$ whenever $\left(u_{1}\right.$ is adjacent with $\left.u_{2}\right)$ Or
($u_{1}=u_{2}$ and v_{1} is adjacent with v_{2})
The composition product, also known as the lexicographic product.

Example 6.1. The composition of two graphs is

Figure 2.8. The composition product of graphs
8. The Symmetric Difference[(Kiran, 2017)]

The symmetric difference $G=G_{1} \oplus G_{2}$ of two graphs G_{1} and G_{2} is the graphs with vertex set $V(G)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and edge set $E\left(G_{1} \oplus G_{2}\right)=\left\{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \mid u_{1} v_{1} \in E\left(G_{1}\right)\right.$ or $u_{2} v_{2} \in E\left(G_{2}\right)$ but not both $\}$.

$$
G=G_{1} \oplus G_{2}
$$

Figure 2.9. The symmetric difference of gra

2.2 Some Properties of Operation in Graph Theory[]

In this section we present some properties of the following graph operations:
(a) Let p_{1} and p_{2} are the orders and q_{1} and q_{2} are the sizes of G_{1} and G_{2} respectively then the order and size of the operations as the following:

1. Union

- $V\left(G_{1} \cup G_{2}=\left|V\left(G_{1}\right)\right|+\left|V\left(G_{2}\right)\right|=p_{1}+p_{2}\right.$
- $\mathrm{E}\left(G_{1} \cup G_{2}\right)=\left|E\left(G_{1}\right)\right|+\left|E\left(G_{2}\right)\right|=q_{1}+q_{2}$

2. Join

- $V\left(G_{1}+G_{2}\right)=\left|V\left(G_{1}\right)\right|+\left|V\left(G_{2}\right)\right|=p_{1}+p_{2}$
- $E\left(G_{1}+G_{2}\right)=\left|E\left(G_{1}\right)\right|+\left|E\left(G_{2}\right)\right|+\left|V\left(G_{1}\right)\right|\left|V\left(G_{2}\right)\right|=q_{1}+q_{2}+p_{1} p_{2}$

3. Box Product

- $V\left(G_{1} ■ G_{2}\right)=\left|V\left(G_{1}\right)\right|\left|V\left(G_{2}\right)\right|=p_{1} \cdot p_{2}$
- $E\left(G_{1} \square G_{2}\right)=\left|E\left(G_{1}\right)\right|+\left|V\left(G_{2}\right)\right|+\left|V\left(G_{1}\right)\right|\left|E\left(G_{2}\right)\right|=q_{1} p_{2}+p_{1} q_{2}$

4. Tensor Product

- $V\left(G_{1} \times G_{2}\right)=\left|V\left(G_{1}\right)\right|\left|V\left(G_{2}\right)\right|=p_{1} \cdot p_{2}$
- $E\left(G_{1} \times G_{2}\right)=2\left|E\left(G_{1}\right)\right|\left|E\left(G_{2}\right)\right|=2 q_{1} q_{2}$

5- Strong Product

- $V\left(G_{1} \otimes G_{2}\right)=\left|V\left(G_{1}\right)\right|\left|V\left(G_{2}\right)\right|=p_{1} \cdot p_{2}$
- $E\left(G_{1} \otimes G_{2}\right)=\left|V\left(G_{1}\right)\right|\left|E\left(G_{2}\right)\right|+\left|V\left(G_{2}\right)\right|\left|E\left(G_{1}\right)\right|+2\left|E\left(G_{1}\right)\right|\left|E\left(G_{2}\right)\right|$

$$
=p_{1} q_{2}+p_{2} q_{1}+2 q_{1} q_{2}
$$

6- Composition Product

- $V\left(G_{1}\left[G_{2}\right]\right)=\left|V\left(G_{1}\right)\right|\left|V\left(G_{2}\right)\right|=p_{1} \cdot p_{2}$
- $E\left(G_{1}\left[G_{2}\right]\right)=\left|E\left(G_{1}\right)\right|\left|V\left(G_{2}\right)\right|^{2}+\left|E\left(G_{2}\right)\right|\left|V\left(G_{1}\right)\right|=q_{1} p_{2}{ }^{2}+q_{2} p_{1}$

7- Disjunction

- $\left(G_{1} \mathrm{v} G_{2}\right)=\left|V\left(G_{1}\right)\right|\left|V\left(G_{2}\right)\right|=p_{1} \cdot p_{2}$
- $E\left(G_{1} v G_{2}\right)=\left|E\left(G_{1}\right)\right|\left|V\left(G_{2}\right)\right|^{2}+\left|E\left(G_{2}\right)\right|\left|V\left(G_{1}\right)\right|^{2}-2\left|E\left(G_{1}\right)\right|\left|E\left(G_{2}\right)\right|$

$$
=q_{1} p_{2}^{2}+q_{2} p_{1}^{2}-2 q_{1} q_{2}
$$

8- Symmetric Difference

- $\left(G_{1} \oplus G_{2}\right)=\left|V\left(G_{1}\right)\right|\left|V\left(G_{2}\right)\right|=p_{1} \cdot p_{2}$
- $E\left(G_{1} \oplus G_{2}\right)=\left|E\left(G_{1}\right)\right|\left|V\left(G_{2}\right)\right|^{2}+\left|E\left(G_{2}\right)\right|\left|V\left(G_{1}\right)\right|^{2}-4\left|E\left(G_{1}\right)\right|\left|E\left(G_{2}\right)\right|$

$$
=q_{1} p_{2}^{2}+q_{2} p_{1}^{2}-4 q_{1} q_{2}
$$

(b) The union, join, box product, tensor product, strong product, composition, disjunction and symmetric difference of the graphs are associative and all of them are commutative except composition operation on the graph.

To show that the all operations are associative we choose one of these operations let be join. We must show that $\left(G_{1}+G_{2}\right)+G_{3}=G_{1}+\left(G_{2}+G_{3}\right)$

$G_{1}+G_{2}$

G_{3}

$$
\left(G_{1}+G_{2}\right)+G_{3}
$$

Figure 2.2.1 The associative of graphs

$$
\therefore\left(G_{1}+G_{2}\right)+G_{3}=G_{1}+\left(G_{2}+G_{3}\right)
$$

Two show that it's commutative let G_{1} and G_{2} are two graphs then we have to show that $G_{1}+G_{2}=G_{2}+G_{1}$

Figure 2.2.2 The commutative of the graphs
$\therefore G_{1}+G_{2}=G_{2}+G_{1}$
The join of the graphs is associative and commutative, its similar to all anther operations except the commutative of competition operation.

Now to show that the competition operation is not commutative let G_{1} and G_{2} are two graphs then we must show that $G_{1}\left[G_{2}\right] \neq G_{2}\left[G_{1}\right]$

Figure 2.2.3. The non-commutative of the graphs
$\therefore G_{1}\left[G_{2}\right] \neq G_{2}\left[G_{1}\right]$
Therefor the composition operation is not commutative.

References

Chartrand, G., \& Zhang, P. (2012). A first course in graph theory. Mineola, New York: Dover.
Chartrand, G., Lesniak, L., \& Zhang, P. (2016). Graphs and Digraphs 6th adition. New York: CRC press.
Ivan, D. A., \& Herish , O. A. (2017). Restricted Detour Polynomial of Edge- Identification of Two Wheel Graphs. AIP Conf. Proc (pp. 020011-1-020011-10). AIP Publishing.

Kiran , K. (2017). Applications of Graph Theory in Everyday Life and Technology. Imperial Journal of interdiscipInay Research (IJIR), 892-894.

M, H. K., H, Y. A., \& A, R. A. (2009). The first and second Zagreb indices of some graph operations. Discrete Applied Mathematics, 804-811.

پوخته

$$
\text { زانكوّى سهلاحهدديز } \square \text { ههوليّر }
$$

كردارى دواذهيى بـاو له گَراف تيّيْرى

نامهياكه
 بهددست هيّنانى پلهى بكالوّريوّس له زانستى ما تـماتيك (تيوّرى گَراف)

للهالين
راڭاز عوسمان

بهسهريدرشتى
ماموّستايى ايڤڤان دليّر على

كولاّن 2023

