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Abstract

There are many ways of combining graphs to produce new graphs. In this
work some operation containing, union, join, some kind of product, disjunction,

and symmetric difference of graph will be present.
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Introduction

Graph theory is a branch of discrete mathematics. Graph theory is the study
of graphs which are mathematical structures used to model pair wise relation
between objects. A graph is made up of vertices V (nodes) and edges E (lines) that
connect them. A graph is an ordered pair G = (V, E) consisting a set of vertices V

with a set of edges E.

Graph theory is originated with the problem of Koinsberg Bridge in 1735. This
problem escort to the concept of Eulerian Graph. Euler studied the problem
Koinsberg Bridge and established a structure to resolve the problem called

Eulerian graph.

The operation of adding and deleting vertices and edges of graphs are regarded as
primary operations, because they are the foundation for other operations, which

many be called secondary operations.
Our work consists of two chapters:
Chapter one we present fundamental concepts of graphs.

Chapter two consists of two sections in section one we present some type of

operations and in section two we present some properties of these operations.



Chapter One

Some basic concept in graph theory

Definition 1.1[ (Chartrand, Lesniak, & Zhang, 2016)]A graph G consists of a finite
nonempty set IV of objects called vertices (the singular is vertex) and a set E of 2-
element subsets of IV called edges. The sets V and E are the vertex set and edge set
of G, respectively. So a graph G is a pair (actually an ordered pair) of two sets IV
and E. For this reason, some write G = (V,E ). At times, it is useful to write V(G)
and E(G) rather than V and E to emphasize that these are the vertex and edge sets
of a particular graph G. Although G is the common symbol to use for a graph, we
alsouse F and H, as well as G', G'" and G, G, etc. Vertices are sometimes called
points or nodes and edges are sometimes called lines.

Definitionl1.2[ (Chartrand, Lesniak, & Zhang, 2016)]If uv is an edge of G, then u

and v are said to be adjacent in G.

Definition 1.3[ (Chartrand, Lesniak, & Zhang, 2016)] The vertex u and the edge

uv are said to be incident with each to other.

Definition 1.4[ (Chartrand, Lesniak, & Zhang, 2016)]The number of vertices in G
is often called the order of G, while the number of edges is its size. Since the vertex

set of every graph is nonempty, the order of every graph is at least 1.

Definition 1.5[ (Chartrand & Zhang, 2012)]An edge having the same vertex as

both of its end vertices is called a self-loop (or simply a loop).



Definition1.6] (Chartrand & Zhang, 2012)] Multigraph M consists of a finite
nonempty set V of vertices and a set E' of edges, where every two vertices of M are
joined by a finite number of edges (possibly zero). If two or more edges join the

same pair of (distinct) vertices, then these edges are called parallel edges.

Definitionl.7[ (Chartrand & Zhang, 2012)] A graph, that has neither self-loops nor

parallel edges, is called a simple graph.

Definition1.8] (Chartrand & Zhang, 2012)]A graph with a finite number of
vertices as well as finite number of edges is called a finite graph; otherwise it is an

infinite graph.

Definition1.9[ (Chartrand, Lesniak, & Zhang, 2016)]The degree of a vertex v in a
graph G is the number of edges incident with v and is denoted by deg.; v or simply

by deg v.

Definition 1.10[ (Chartrand, Lesniak, & Zhang, 2016)]A graph H is called a
subgraph of a graph G, written H € G,

ifV(H) € V(G) and E(H) € E(G).We also say that G contains H as a
subgraph.

Definition 1.11[ (Chartrand & Zhang, 2012)] u — v walk W in G is a sequence of
vertices in G, beginning with u and ending at v such that consecutive vertices in
the sequence are adjacent, that is, we can express W as W = (u = v, vy, ..., Vj =

v)where k > 0and v; and v; , , are adjacentfori = 0,1,2,....,k — 1



Definition 1.12[ (Chartrand, Lesniak, & Zhang, 2016)]JA u — v walk in a graph in

which no vertices are repeated isa u — v path.

Definition 1.13[ (Chartrand & Zhang, 2012)]If G contains a u — v path, then u

and v are said to be connected and u is connected to v (and v is connected to u).

Definition 1.14[ (Chartrand, Lesniak, & Zhang, 2016)]A graph G is complete if
every two distinct vertices of G are adjacent. A complete graph of order n is
denoted by K,.

Definition 1.15[ (Chartrand, Lesniak, & Zhang, 2016)]A graph G is bipartite if
V(G) can be partitioned into two sets U and W (called partite sets) so that every

edges of G joins a vertex of U and a vertex of /.

Definition 1.16[ (Chartrand, Lesniak, & Zhang, 2016)] A nontrivial closed path is

called a cycle.

Definition 1.17[ (Ivan & Herish , 2017)] wheel w,, for n > 4, is a graph of order n

consisting of a cycle c,_, together with a vertex adjacent to every vertex of c,,_;.



Chapter Two

Binary operation

2.1.Some Common Binary Operation in Graph Theory

In this section we describe Some common binary operations defined in graph
theory. In the following definitions, we assume that G, and G, are two graphs with

disjoint vertex sets.

1:union (C.vasudev, 2006)

The union G = G, U G, of graphs G, and G, with disjoint point sets V; and V, and
edge sets E; and E, isthe graphwithV =V, UV, and E = E; U E,.

a b a

c d ¢

Figure 2.1. The Union of graphs

2 Join[ (C.vasudev, 2006)]

If the graph G, and G, such that V(G,) UV (G,) = @ , then the sum G, + G, is
defined as the graph whose vertex set is V(G,) + V(G,) and the edge set is
consisting those edges, which are in G; and in G, and the edges obtained by
joining each vertex of G;to each vertex of G,. That’s mean

V(G) =V(Gy) +V(Gy)
E(G) =E(Gy) + E(Gy) VU{uv;u € V(Gy,v € V(G,)}



Example 2.2.The join of two graphs k; + C; = W, when k; is complete graph,

Ce i1s acycle and W, is a wheel.

Ce

Figure 2.2. The join of graphs

Example2.3. The join of k, and P, is E, Where k,is complete with order 1, B, is

path with order n and E, is Fan graph with order n.

Figure 2.3. The join of graphs



3 Box product[ (C.vasudev, 2006)]
G = GIIGZ
V(G) =V(Gy) X V(Gy)

E(G) if (uy,u,) adjacent (v,,v,)then u; = v, and u, adjacent v,
€ E(G,) OR u, = v, and u, adjacent v, € E(G,)

Uy
v
\ (v1,uq) (v1,Uz) (v1, u3) (v1, Us)
U,
2 Uy ) Uy, Up) V,, Uz ) V) Us)
< U3 \
1% ]
& ouy (v3,u1) (v3,uz) (v3,u3) (v3,Us)

Figure 2.4. The box product of graphs

2. The box product of k, and P, graph is a ladder graph L,, :

Figure 2.5. The box product of graphs



4. Tensor Product[ (Kiran , 2017)]

The tensor product G; x G, of graph G, and G, is a graph such that

1.The vertex set of G; X G, is the box product V(G,) X V(G,).

2. Distance vertices (u, 1) and (v, ©) are adjacent in G; X G, if and only if

e u isadjacent to v and

e 11 isadjacentto v

uze

Figure 2.6. The tensor product of graphs

The tensor product is also called

> Direct product

» Categorical product
> Relational product
» Cardinal product

» Kronecker product



5.The disjjuction [ (Chartrand, Lesniak, & Zhang, 2016)]
G = G,VG,

V(G) = V(G,) X V(Gy)

E(G) = uwyu, € E(G,)

Orv,v, € E(G,)

U1
u11

6. Strong Product[ (Kiran, 2017)]

The strong product ¢ = G;® G,0f graphs G, and G, is a graphs such that
1. The vertex set of G;® G, is the box product V(G;) X V(G,).

2. Distance vertices (u, 1) and (v, ¥) are adjacent in G,® G, if and only if

e u = vand isadjacentto v or
e U = vanduisadjacentto v or

e u isadjacent to v and u is adjacent to v.

It is the union of box product and tensor product.



Uip ZT ] (uq,v1) (U1, v2) (uq,v3)
(uy, v3)
Uy¢ %X
(uz,v1) (us, v;) (usz, v3)
Uzy V34

Figure 2.7. The strong product of graphs

The strong product is also called

» Normal product
» AND product

6. Composition Product[ (Kiran, 2017)]

The composition product ¢ = G,[G,] of a graphs G, and G, with disjoint vertex

sets V; and V,and edge set E, and E, is the graph with vertex set V; x V, and
u = (uq, v1) is adjacent with v = (u,, v,) whenever (u, is adjacent with u,)
Or

(u; = u, and v, is adjacent with v,)

The composition product, also known as the lexicographic product.

10



Example 6.1. The composition of two graphs is

(uq,uy) (uq,v7) (uqg, wy)
i ——+o &——e—-90 (vy,uy) (v1,V,) (vy, W)
Uy %] Wy U, Vy Wy
G, G
Wiup) (W) (Waws)
G = G1[Gz]

Figure 2.8. The composition product of graphs

8. The Symmetric Difference[ (Kiran, 2017)]

The symmetric difference ¢ = G,® G,o0f two graphs G, and G, is the graphs with
vertex set V(G) = V(G,) X V(G,) and edge set

E(G1® G,) = {(uy,uy) (v, v2)|lu v, € E(Gy)or u,v, € E(G,) but not both}.

Uy (uy,v1) (ug, v2) (uq, v3)
v v v
G, G, 1 2 3
U, (uz, v1) (Up, v2) (uz, v3)
G - G1® GZ

Figure 2.9. The symmetric difference of gra

11



2.2 Some Properties of Operation in Graph Theory[]
In this section we present some properties of the following graph operations:

(a) Let p; and p, are the orders and g, and g, are the sizes of G; and G,

respectively then the order and size of the operations as the following:

1. Union

e V(G VUG, =[V(G)|+ V(G| =p1 +
e E(G,UG,) =I|EG)|+I|EG)I=q1+q;

2. Join

o V(G +Gy) =|V(G)I+1V(G)| =p1+D2
o E(Gi+ Gy) =|E(G)|+[EG)]I + VGV (G| = q1 + g2 + D1D2

3. Box Product

o V(G MG,) = |V(G)IIV(G)| =p1 - D2
o E(G,MGy) = |EG)]+ V(G| + IV(GDIIE(G)| = q102 + P12

4. Tensor Product

o V(G X Gy) = |V(G)IV(G)| =p1 D2
e E(Gy X Gp) =2|E(G)IIE(G)| = 29192

12



5- Strong Product

e V(G1® Gy) = [V(G)IIV(G)| =p1 D2
o E(G;®G;) = |V(GDIIE(G)| + [V(GIIE(G)] + 2[E(G)IIE(G2)]
= D192 + P21 + 2019>

6- Composition Product

o V(G1[G2]) = [V(GDIIV(G)| = p1 P2
o E(G{[G;]) = |E(G1)||V(G2)|2 + |E(GHIIV(G)] = ‘hpzz + q2p1

7- Disjunction

o (G1vGy) = |V(G)IIV(G)| =p1 P2
o E(G1vGy) = [EG)IV(G)I? + |E(GIIV(G)I* = 2|E(G)IE(GR)

= CI1P22 + CIZP12 — 2419

8- Symmetric Difference

o (G1BGy) =V(G)IIV(G)] =p1 P2
o E(Gi®Gy) = |EGIIV(G)I? + [EG)IIV(G)I? — 4|E(GDIIE(G)]

= CI1P22 + q2P12 —4q,q;

13



(b) The union, join, box product, tensor product, strong product, composition,
disjunction and symmetric difference of the graphs are associative and all of them

are commutative except composition operation on the graph.

To show that the all operations are associative we choose one of these operations

let be join. We must show that (G, + G,) + G3 = G, + (G, + G3)

G, + G, G,
Gy Gy + Gy G, + (G, + G3)

Figure 2.2.1 The associative of graphs

14



e (Gl + Gz) + G3 - Gl + (GZ + G3)

Two show that it’s commutative let G, and G,are two graphs then we have to show

that Gl +G2 = Gz +G1

)
Gq: Gy: G, + Gy:
)
()
Gy ! G G, + Gy:
()

Figure 2.2.2 The commutative of the graphs
o Gl+62 :G2+G1

The join of the graphs is associative and commutative, its similar to all anther

operations except the commutative of competition operation.

Now to show that the competition operation is not commutative let G, and G,are

two graphs then we must show that G, [G,] # G,[G,]

Uq V1 (uy,v1) (uy, v3) (uqg,v3)
Gl GZ . UZ G1 [Gz] :
Uy U3 (uz,vy1) (Uz, v2) (uz, v3)

15



(v, uq) (V1 Up)

12 Uq
G: ¢v, Gy G,[G]: (vy,uq) (v2,uz)
U3 U

(Vs u1) (vs,uy)

Figure 2.2.3. The non-commutative of the graphs

~ G1[Gy] # Gy[G4]

Therefor the composition operation is not commutative.

16
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