40 Questions in Calculus

Q1/ Find the solution set of $\sqrt{\left(x^{2}-5 x+6\right)^{2}}=x^{2}-5 x+6$.

Q2/ Prove or disprove that: If $x, y \in R$ then $|x y|=|x||y|$.
Q3/ Find $\lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x^{m}-a^{m}}$.
Q4/ If $\sqrt{5-2 x^{2}} \leq f(x) \leq \sqrt{5-x^{2}}$ for $-1 \leq x \leq 1$, find $\lim _{x \rightarrow 0} f(x)$.
Q5/ State and prove Mean value theorem.
Q6/ If $\varphi(x)=x^{\cos x}$, then find $\frac{d \varphi}{d x}$.
Q7/ If b, c and d are constants, for what value of b will the curve $y=x^{3}+b x^{2}+$ $c x+d$ have the point of inflection at $x=1$? Give reasons for your answer.

Q8/ Define the natural logarithm function. What is its domain and rang. Find its derivative and sketch its graph.

Q9/ Suppose that $f(x)=x^{2}$ and $g(x)=|x|$. Then the composites $\left(f^{\circ} g\right)_{(x)}=$ $|x|^{2}=x^{2}$ and $\left(g^{\circ} f\right)_{(x)}=\left|x^{2}\right|=x^{2}$ are both differentiable at $x=0$ even though g itself is not differentiable at $x=0$. Dose this contradict the Chain Rule? Explain.

Q10/ Prove or disprove that: If f has a derivative at $x=c$, then f is continuous at $x=c$.

Q11/ Prove or disprove that: If f is continuous at $x=c$, then f has a derivative at $x=c$.

Q12/ Suppose that f is an even function and g is an odd function defines on the entire real line. Which of the following are even? Odd?
(a) $\left(f^{\circ} g\right)_{(x)}$
(b) $(g \cdot f)_{(x)}$

Q13/ Prove that $\lim _{x \rightarrow 0^{+}} \sqrt{x}=0$.
Q14/ Prove or disprove that: If $x \in R$ then $|x|^{2}=x^{2}$.
$\mathrm{Q} 15 /$ Find the solution set to $|x-3|=x+2$.
Q16/ Find the solution set to $\sqrt{(3 x-2)^{2}}=2-3 x$
Q17/ Prove or disprove that: Let $h=f g$ be product of two differentiable function of x. If the graphs of f and g have inflection point at $x=a$, then the graph of h have an inflection point at a.

Q18/ Define one to one function. Let $\tau(x)=\sec x$ for all x in the domain of τ, is τ one to one function? Explain your answer, then sketch the function of both $\tau(x)$ and $\tau^{-1}(x)$.

Q19/ If $f(x)=5 x-3, \quad x_{0}=1$ and $L=2$ prove that $\lim _{x \rightarrow x_{0}} f(x)=L$.
Q20/ State and prove Sandwich theorem
Q21/Prove or disprove: If the function $f(x)$ has a critical point then $f(x)$ has local minimum.

Q22/ Test the continuity of the function $f(x)$ on R, when $f(x)= \begin{cases}x+3 & \text { if } x<0 \\ x^{2}-1 & \text { if } x \geq 0\end{cases}$
Q23/ Define derivative of a function $f(x)$ on an open interval (a, b). Prove that: if $f(x)$ is differentiable at x_{0}, then it's continuous at it. Dose the converse of this theorem true in general? Explain your answer by an example.

Q24/_Find limit of the following functions if exist.

$$
1-\lim _{x \rightarrow \infty} \sqrt{x^{2}+x}-x \quad 2-\lim _{x \rightarrow 0} \frac{1-\sec x}{\tan x}
$$

3- $\lim _{x \rightarrow-\infty} e^{\frac{3 x^{2}-1}{x^{2}+1}} \quad 4-\lim _{x \rightarrow 0}\left(3-x^{2} \sin \frac{1}{x}\right)$
Q25/ Define continuous function on interval .
Let $f(x)$ be differentiable on (a, b) and continuous on $[a, b]$, then there exists at least on number $c \in(a, b)$ such that $f(c)=\frac{f(b)-f(a)}{b-a}$. Explain the theorem by an example. What is the special case of this theorem, state it.

Q26/ Find the solution set of the inequality $\lfloor x\rfloor^{2}-3\lfloor x\rfloor=-2$

$$
\text { Q27/ For what values of } x \text { is } \quad \text { (i) }\lfloor x\rfloor=0 ? \quad \text { (ii) }\lceil x\rceil=0 ?
$$

Q28/ What real numbers x satisfy the equation $\lceil x\rceil=\lceil x\rceil$?
Q29/ Prove that: $\operatorname{coth}^{2} x=\operatorname{csch}^{2} x+1$.
Q30/ If an even function $f(x)$ has a local maximum value at $x=c$, can anything be said about the value of f at $x=-c$? Give reason for your answers.

Q31/ Define a continuous function. State Roll's theorem then explain it by an example.
Q32/ Find the solution set of $-|x-5|<-7$.
Q33/ Solve $\frac{e^{x}-e^{-x}}{2}=1$ for x.
Q34/ Find an equation of the tangent to the curve $y=\frac{1}{x^{3}}$ at a point $\left(-2,-\frac{1}{8}\right)$.
Q35/ Prove that: Let h, f, g are functions when $f(x) \leq g(x) \leq h(x)$ for all x in some open interval (I) containing c, except possibly at $x=c$ it self.

Suppose also $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} h(x)=L$ then $\lim _{x \rightarrow c} g(x)=L$.
Q36/ Prove that: $\lim _{x \rightarrow x_{0}} f(x)=L$, where $f(x)=\sqrt{x-1}, x_{0}=5, L=2$ and $\varepsilon=1$.

Q37 // If $f(x)=\frac{x^{4}}{4}-2 x^{2}+4$ then answer the following:

1. What are the critical points of f ?
2. On what intervals is f increasing or decreasing?
3. At what points, if any, dose f assume local maximum and minimum values?
4. What are the inflection points of f ?
5. Find where the graph of f is concave up and where it is concave down.

Q38/ Let $f(x)$ and $g(x)$ be two differentiable functions. Then Prove that $D_{x}[f(x) \cdot g(x)]=f(x) D_{x} g(x)+g(x) D_{x} f(x)$.

Q39/ Solve for x without using a calculator. $\ln \left(\frac{1}{x}\right)+\ln \left(2 x^{3}\right)=\ln 3$.
Q40/ Evaluate the following integrals

1. $\int \frac{e^{x}}{\sqrt{1+4 e^{2 x}}} d x$
2. $\int \tan ^{-1} x d x$
3. $\int 6^{\cos x} \sin x d x$
4. $\int \sin ^{3} x \cos ^{-4} x d x$
5. $\int p^{4} e^{-p} d p$
6. $\int \theta^{2} \sqrt{3 \theta-1} d \theta$
7. $\int \frac{x^{2} d x}{\left(9-x^{2}\right)^{\frac{1}{2}}}$
8. $\int \frac{2 d x}{x \sqrt{1-4 \text { lin }^{2} x}}$
