1.1 Definition A set is collection of distinct objects. These objects are called the elements, or members.

Important Sets of Real Numbers

The set \mathbb{N} of natural numbers is define by

$$\mathbb{N} = \{1, 2, 3, \dots\}$$

The set \mathbb{Z} of integers is define by

$$\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}.$$

The set \mathbb{Q} of rational numbers is define by

$$\mathbb{Q} = \{a/b : a, b \in \mathbb{Z}, b \neq 0\}.$$

Non-periodic decimal fractions are called irrational numbers and denoted by *Irr*.

For example, $\sqrt{2}$, $\sqrt{3}$, π

Real numbers

Real Numbers are made up of rational numbers and irrational numbers and denoted by $\ensuremath{\mathbb{R}}.$

The Number Line

We may use the number line to represent all the real numbers graphically; each real number corresponds to exactly one point on the number line. ∞ and $-\infty$ are not real numbers because there is no point on the number line corresponding to either of them.

 \mathbb{C} , denoting the set of all complex numbers: $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}$.

For example, $1 + 2i \in \mathbb{C}$.

Intervals

A subset of the real line is called an **interval** if it contains at least two numbers and also contains all real numbers between any two of its elements.

Types of intervals

TABLE 1.1 Types of intervals Notation Set description Type **Picture** $\{x \mid a < x < b\}$ Finite: (a, b)Open $\{x | a \le x \le b\}$ [a, b]Closed $\{x | a \le x < b\}$ [a, b)Half-open $\{x | a < x \le b\}$ (a, b]Half-open Infinite: (a, ∞) $\{x|x>a\}$ Open $[a, \infty)$ $\{x|x\geq a\}$ Closed $(-\infty, b)$ $\{x|x < b\}$ Open $\{x|x\leq b\}$ Closed $(-\infty, b]$ $(-\infty, \infty)$ R (set of all real numbers) Both open and closed

Absolute value

1.11 Definition The **absolute value** of a number x, denoted by is defined by the formula

$$|x| = \begin{cases} x & if & x \ge 0 \\ -x & if & x < 0 \end{cases}$$

1.12 Example
$$|2| = 2$$
, $|-5| = -(-5) = 5$.

Some properties of the absolute value

Let *a*, *b* and *x* be any real numbers then:

- 1) $|x| = \sqrt{x^2}$
- **2)** |ab| = |a||b|
- 3) $|a+b| \le |a| + |b|$
- **4)** $|a-b| \ge ||a|-|b||$
- **5)** $|x| \le a$ if and only if $x \le a$ and $x \ge -a$ (or $-a \le x \le a$)
- **6)** $|x| \ge a$ if and only if $x \ge a$ or $x \le -a$

Cartesian product

Definition Let A and B be any two non empty sets, the Cartesian product of A with B denoted by $A \times B$ is defined by

$$A \times B = \{(a, b): a \in A \text{ and } b \in B\}$$

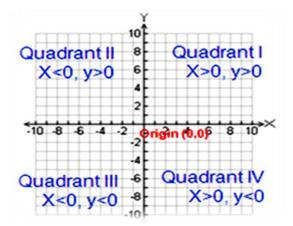
 $B \times A = \{(a, b): a \in B \text{ and } b \in A\}$

Remark

- 1) $A \times B \neq B \times A$
- 2) $A \times B = B \times A \text{ iff } A = B$
- **3)** If *A* contains *m* elements and *B* contains *n* elements, then $A \times B$ contains $m \times n$ elements.

3

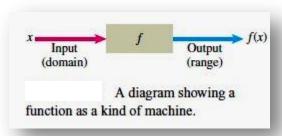
- **4)** $A \times B = \phi$ iff $A = \phi$ or $B = \phi$
- **5)** The Cartesian product of \mathbb{R} with itself is $\mathbb{R} \times \mathbb{R}$ denoted by \mathbb{R}^2 , $\mathbb{R}^2 = \{(x, y) : x, y \in \mathbb{R}\}$, \mathbb{R}^2 denotes the Cartesian plane.



The Function

Definition Let A and B be any two non empty sets then a function (denoted by f) from A to B is a relation from A to B provided that for each $x \in A$ there exist only a unique $y \in B$ such that $(x, y) \in f$ and f can be written as:

$$f: A \to B$$
, $y = f(x)$ or $y \xrightarrow{f} x$.



Example Let $f: \mathbb{R} \to \mathbb{R}$. Does the following f are functions or not?

1)
$$f(x) = \sqrt{x}$$

2)
$$f(x) = x^2$$

3)
$$f(x) = 3$$

Solution:

- **1.** Is not a function because $\sqrt{-1}$ is undefined.
- **2.** Is a function since for all x there exist y such that $(x, y) \in f$.
- **3.** is a function since for all *x* there exist *y* such that $(x, y) \in f$.

4

Example Let $f: \mathbb{R}^+ \to \mathbb{R}$, $x = y^2$. Is not a function because

$$(4,-2) \in f \text{ and } (4,2) \in f$$

Example Let $f: \mathbb{R}^+ \to \mathbb{R}^+$, $x = y^2$. Is a function

Definitions

1) The set *A* of all possible input values is called the *domain* of the function.

That means $D_f = \{x : x \in A \text{ and } y = f(x) \text{ for a unique } y \in B\}$

2) The set of all values of f(x) as x varies throughout A is called the **range** of the

function, i.e.
$$R_f = \{y: y \in B \text{ and } y = f(x) \text{ for at least one } x \in A\}$$

The range may not include every element in the set *Y*.

Examples Find the domains and ranges of these functions.

Function	Domain (x)	Range (y)		
$y = x^2$	$(-\infty, \infty)$	[0, ∞)		
y = 1/x	$(-\infty,0)\cup(0,\infty)$	$(-\infty,0)\cup(0,\infty)$		
$y = \sqrt{x}$	$[0,\infty)$	[0, ∞)		
$y = \sqrt{4-x}$	$(-\infty, 4]$	$[0,\infty)$		
$y = \sqrt{1 - x^2}$	[-1, 1]	[0, 1]		

Solution The formula $y = x^2$ gives a real y-value for any real number x, so the domain is $(-\infty, \infty)$. The range of $y = x^2$ is $[0, \infty)$ because the square of any real number is nonnegative and every nonnegative number y is the square of its own square root, $y = (\sqrt{y})^2$ for $y \ge 0$.

The formula y = 1/x gives a real y-value for every x except x = 0. We cannot divide any number by zero. The range of y = 1/x, the set of reciprocals of all nonzero real numbers, is the set of all nonzero real numbers, since y = 1/(1/y).

The formula $y = \sqrt{x}$ gives a real y-value only if $x \ge 0$. The range of $y = \sqrt{x}$ is $[0, \infty)$ because every nonnegative number is some number's square root (namely, it is the square root of its own square).

In $y = \sqrt{4-x}$, the quantity 4-x cannot be negative. That is, $4-x \ge 0$, or $x \le 4$. The formula gives real y-values for all $x \le 4$. The range of $\sqrt{4-x}$ is $[0, \infty)$, the set of all nonnegative numbers.

The formula $y = \sqrt{1 - x^2}$ gives a real y-value for every x in the closed interval from -1 to 1. Outside this domain, $1 - x^2$ is negative and its square root is not a real number. The values of $1 - x^2$ vary from 0 to 1 on the given domain, and the square roots of these values do the same. The range of $\sqrt{1 - x^2}$ is [0, 1].

Find the domains and ranges of these functions. H.W.

1)
$$y = f(x) = \frac{x+3}{x^3+1}$$
 2) $y = f(x) = \sqrt{\frac{x+1}{x}}$

2)
$$y = f(x) = \sqrt{\frac{x+1}{x}}$$

Definition (The Graph of Function)

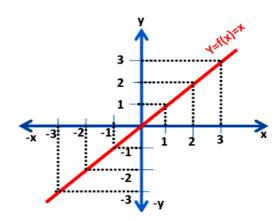
The graph of the function y = f(x) is the set of all points (x, y) in the Cartesian plane $X \times Y$ such that (x, y) satisfies the function y = f(x).

That means the graph is $\{(x,y): y = f(x)\}$.

Example Find the graph of this function y = f(x) = x

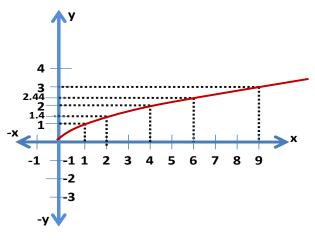
Solution:

х	1	2	3	0	-1	-2	-3
y = f(x)	1	2	3	0	-1	-2	-3
(x,y)	(1,1)	(2,2)	(3,3)	(0,0)	(-1,-1)	(-2, -2)	(-3, -3)



1.34 Example : Graph this function $f(x) = \sqrt{x}$ **Solution**:

x	y=f(x)	(x, y)
0	0	(0,0)
1	1	(1,1)
2	1.4	(2,1.4)
4	2	(4,2)
6	2.44	(6,2.44)
9	3	(9,3)
0	0	(0,0)

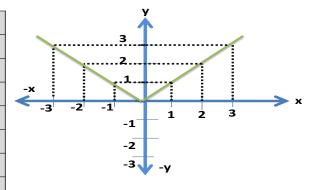


1.35 Example: graph of this function

$$y = f(x) = |x|$$

Solution:

×	y=f(x)	(x, y)
1	1	(1,1)
2	2	(2,2)
3	3	(3,3)
0	0	(0,0)
-1	1	(-1,1)
-2	2	(-2,2)
-3	3	(-3,3)



Note Let f(x) and g(x) be two functions having D_f and D_g as a domain respectively. Then

1)
$$D_{f+q} = D_{f-q} = D_{f \times q} = D_f \cap D_q$$

2)
$$D_{f/g} = D_f \cap D_g - \{x : g(x) = 0\}$$

Example Find the domain for the function $K(x) = \frac{x+1}{\|x\|-1}$

Solution: Let f(x) = x + 1 and g(x) = [x] - 1

$$D_f = \mathbb{R}$$
 and $D_g = \mathbb{R}$

$$\Rightarrow D_K = \mathbb{R} \cap \mathbb{R} - \{x : [x] - 1 = 0\} = \mathbb{R} - \{x : [x] = 1\} = \mathbb{R} - [1,2)$$

Definition Type of Functions

- **1)** *Constant function* y = f(x) = c where $c \in \mathbb{R}$ is called the constant function.
- **2)** *Identity function* y = f(x) = x is called the identity function.
- **3)** Polynomial function $y = f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$ where $a_i \in \mathbb{R}$, $i = 0, 1, \dots, n$. For $a_0 \neq 0$ and $n \geq 0$ an integer is called a polynomial of degree n.

$$f(x) = x^6 + x - 6.$$

4) *Even function* The function y = f(x) is called an even function if

$$f(-x) = f(x) \ \forall \ x \in D_f.$$

For example $y = f(x) = x^2 + 1$ is an even function.

5) *Odd function* The function y = f(x) is called an even function if

$$f(-x) = -f(x) \ \forall \ x \in D_f.$$

For example $y = f(x) = x^3$ is an odd function.