# Differential Equations $2^{\text {nd }}$-stage-chemistry 

## Lecture 2

## 2021-2022

## Separable Differential Equations:

A separable differential equations is the equation of the form $\boldsymbol{F}\left(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{y}^{\prime}\right)=\mathbf{0}$, which can be factored $\boldsymbol{y}^{\prime}=\boldsymbol{M}(\boldsymbol{x}) \boldsymbol{N}(\boldsymbol{y})$ where $\boldsymbol{M}(\boldsymbol{x})$ is the function of x and $N(y)$ is the function of y , It means that separated to two disjoint parts.

To find a general solution for a first order separable D. E., we use integrate both sides of the differential equation after you have separated the variables.

$$
\frac{d y}{d x}=M(x) N(y) \rightarrow \frac{d y}{N(y)}=M(x) d x \rightarrow \int \frac{d y}{N(y)}=\int M(x) d x
$$

In order to find a general solution, you will have to be able to find an antiderivative on both sides of the integral equation.

## Examples:

1) Solve $x y-2 y^{\prime}=0$
2) Solve $2 x y+6 x+\left(x^{2}-2\right) y^{\prime}=0$
3) Solve $\frac{d y}{d x}+\frac{\sin x}{y}=0$ where $y(0)=1$
(Hint: when the question gives initial value, we must find the particular solution)
