Differential Equations $2^{\text {nd }}$-stage-chemistry

Lecture 5

2021-2022

Integrating Factor

Integrating factors are useful for solving ordinary differential equations that can be expressed in the form

$$
\begin{equation*}
\frac{d y}{d x}+p(x) y=f(x) \tag{*}
\end{equation*}
$$

The basic idea is to find some function, say $I(x)$, called the "integrating factor", Which we can multiply through equation (*) in order to bring the left-hand side under a common derivative. For the canonical first-order linear differential equation $\left({ }^{*}\right)$, the integrating factor is $I(x)=e^{\int p(x) d x}$.

$$
\begin{gathered}
I(x) \frac{d y}{d x}+I(x) p(x) y=I(x) f(x) \\
I(x) y=\int I(x) f(x)
\end{gathered}
$$

Examples

1) Solve $\frac{d y}{d x}+\frac{y}{x}=2$
2) Solve $\frac{d y}{d x}-\frac{4 y}{x}=x^{5} e^{x}$
3) Solve $\frac{d y}{d x}-\frac{2 y}{x}=0$
