

Mineralogy First year Time: 1.5 hour

Final Examination- Set 1

_	Define th e auxite- Ze		g terms: p- Isomorpl	hous mine	erals- Ionic	bond	(12	2 marks)	1
Q2: state	Comple ements.	ete the	following	senten	ces with	a p	roper	words	or
	a) The	minerals	are nam	ed on		s of:		6 marks)	
1	•	ral examp	le for ionic	bond is	; cov	alent bo	ond is	••••••	, 1
(c) Inosilicad) The pyr 2	ates are di oxene and	vided to thr amphibole 3	groups a	re differ in	1		•••••	
	and aragg) Give an	ite is cryst onite in	allized in for oxides:	system.	system, gra	_		-	1
	n) Sulphid () Coppe	les are div	ided to man st common common in	ily assoc	ciated with	h			
righ	t and (X) in front	ences are e of the false vo or more l	, and cor	rect the fa	lse. (2	7 marks		the
its	o) Felds	spathoid	group is	•	drous fra lects forma	meworl		cates, silica.	and

- c) Zeolite group is hydrous framework aluminosilicate of hard and high density.
 - d) Most of sulphide minerals are of hydrothermal origin.
- e) The name electrum is applied to natural gold with 20% or more of iron.
- f) The structure of kaolinite is formed from one tetrahedra and two octahedra.
 - g) 5-membered ring and rings with more than 6-tetrahedra are unknown.
- h) The pyroxene group being single chain structure and amphibole group double chain structure.
- i) Bridging oxygen is that linked the SO₄ group with cations in sulphate class.

Q4: Give the reason for the following:

(16 marks)

- a) Forsterite and olivine are incompatible with free silica.
- b) Zircon is radioactive mineral.
- c) Perfect and easy cleavage of graphite mineral.
- d) The gibbsite structure is referred as dioctahedral.

Q5: Draw the structure for the following:

(9 marks)

- a) Face centered cubic lattice.
- b) Inosilicates (single chain only).

Good Luck

Salahaddin University College of Science Department of Geology

Mineralogy First year

Time: 1.5 hour

Final Examination- Set 1

Q1: Define the following terms: (12 m Isotope- Pseudomorphism- Luster- metallic bond									
Q2: Complete the following sentences with a proper words or statements. (36 marks)									
a) The three polymorphous minerals of TiO ₂ are: 1	` '								
2									
b) Minerals with covalent bonds are characterized by: 1									
c) Solid solution is controlled by: 1 2									
d) Give a mineral example for: 1. nesosilicate cyclosilicates	; 2. ; 3. tectosilicate								
e) Nesosilicate subclass is characterized by: 1	2)								
f) Give an example for sulphides: 1. A ₂ X type 2. AX typ 3. AX ₂ type	system.								
2 3									
i) The general formula of single chain inosilicates is	and								
of tectosilicate is									
Q3: The following sentences are either true or false. Mark $(\ /\)$ in front of the right and $(\ X\)$ in front of the false, and correct the false.									
a) The hardness of the mineral is related to the	,								
between atoms.									

- b) Feldspathoid group is anhydrous framework silicates, and its composition reflects formation from high silica.
- c) Sulphides predominantly of glassy luster and with a general formula $A_m X_{\text{p}}$.
 - d) Most of sulphide minerals are of hydrothermal origin.
- e) The structure of diamond is of very strong tetrahedral bonding of one carbon to 4 neighbors.
- f) The structure of talc is formed from one tetrahedra and two octahedra.
 - g) The luster is largely dependent on the color of the mineral.
- h) The pyroxene group being single chain structure and amphibole group double chain structure.
- i) Hydroxides are very common minerals, which produced by weathering and hydration of other minerals.

Q4: Give the reason for the following:

(16 marks)

- a) Zircon appears as a detrital mineral in river and beach sand.
- b) Absence of anorthite-rich plagioclase in moderate temperature and high pressure.
 - c) The tectosilicates have low density.
 - d) The brucite structure is referred as trioctahedral.

Q5: Draw the structure for the following:

(9 marks)

- a) Body centered cubic lattice.
- b) Cyclosilicates (4-membered only).

Good Luck

Mineralogy First Year Time: 1.5 hour

Final Examination- Set 2

Q1: Define the following terms:

(12 mark)

a) Limonite b) Electrum c) Zeolite group d) Isomorphous minerals.

Q2: Give the reason for these following:

(16 mark)

- a) Zircon is radioactive mineral.
- **b)** Gibbsite and brucite have relatively low hardness.
- c) Olivine and quartz cannot crystallize together in a rock.
- **d**) The good electrical and thermal conductivity in minerals that have metallic bonds.

Q3: The following sentences are either true or false. Mark (/) in front of the right and (x) in front of the false, and correct the false. (27 mark)

- a) Sulphides predominantly of nonmetallic luster and with a general formula $A_m X_p$.
- **b)** The sorosilicate subclass has a formula $(Si_2O_7)^{-6}$ and the most common minerals are: epidote group.
- **c**) The form and the cleavage are the important distinguishing features between pyroxene and amphibole.
- **d**) In general, the increasing the complexity of silicate structure is followed by increasing the density and packing of ions.
- **e**) Feldspathoid group is anhydrous framework silicates, and its composition reflects formation from high silica.
- f) Most of sulphide minerals are of hydrothermal origin.
- g) The structure of kaolinite is formed from one tetrahedra and two octahedra.

h)	5-memb	ered ring	and	rings	with	more	than	6-tet	rahedra	in
C	cyclosilicat	tes a	re unkı	nown.						
i)	Bridging	oxygen	s that	linked	the	SO_4	group	with	cations	in
sulphat	te		class	•						
Q4: Complete the following sentences with a proper words or statements.										
								(36 mark))
a) Mos	st common	minerals of	cyclos	silicates	are: 1.	• • • • • • • •				
2		3	• • • • • • • •							
b) The	e pyroxeno	id minerals	are dif	fer from	pyrox	enes in		a	and	
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •								
c) All	the minera	als in tectos	ilicates	are alur	ninum	silicate	es of Na	a ⁺ , K ⁺ ,	Ca ²⁺ ,	
and Ba	2+except th	e minerals	of	gro	oup.					
d) The	e classifica	tion of mine	eral spe	cies is a	ccordi	ng to th	ne		•••••	
e) A m	ineral exar	nple for ion	ic bond	d is	; co	valent	bond is		••••	
metalli	c bond is .									
f) Inosi	ilicates are	divided to	three g	roups: 1.	• • • • • • •	2		. 3	••••	
	types of no	on-metallic	luster a	are: 1	• • • • • • •	2	• • • • • • • • •		••••	
3 h) Sph	alerite is ci	 rystallized i	n	SVS	item. g	raphite	e in	SV	stem	
		e in		•	, 2	1		J		
	_	le for oxide				. 2. AX	X tvpe.			
	_			2 11			<i>J</i> 1			
		livided to m	anv tvr	oes accoi	rding t	o the		r	atio.	
-		:O in the ter								
		ructure for					10 10 111		(9 marks))
		ered cubic l						`	(> 110001105)	,
	•	ates (3-men		only)						
<i>(</i>)	Cyclosine		100100	Jiii y j.						

GOOD LUCK

Mineralogy First Year Time: 1.5 hour

11mc. 1.3 no

Final Examination- Set 2

Q1: Define the following terms:

(12 mark)

- a) Bauxite b) Streak c) Polymorphous minerals d) Amorphous materials.
- **Q2:** Give the reason for these following:

(16 mark)

- a) The structure of brucite sometimes referred to as trioctahedral.
- **b)** Nesosilicates generally characterized by equidimensional nature of their crystal.
 - c) Zircon appears as a detrital mineral in river and beach sands.
- d) The tectosilicates have low density.

Q3: The following sentences are either true or false. Mark (/), in front of the right and (x) in front of the false and correct the false. (27 mark)

- a) The name electrum is applied to natural gold with 20% or more of iron.
- **b**) Graphite is of common occurrence in sedimentary rocks.
- c) The nesosilicate subclass are those silicates with isolated $(SiO_4)^{-4}$ group in the structure.
- **d**) The structure of kaolinite is formed from one tetrahedra and one octahedra.
- e) The luster is largely dependent on the color of the mineral.
- **f**) Under the moderate temperature and high pressure of low and medium grade metamorphism the epidote group minerals are more stable than anorthite.
- **g**) Sulphur is most commonly found in igneous rocks associated with gypsum and limestone.

- **h**) Feldspathoid minerals have tectonic and economic importance.
- i) Hydroxides are very common minerals, which produced by weathering and hydration of other minerals.

Q4: Complete the following sentences with a proper words or statements:
(36 mark)
a) TiO ₂ occurs in three polymorphous forms: 1)
b) The native element class is divided in to two subclasses: 1)
2
c) The silicates are subdivided into six subclasses, according to
d) The color of minerals depends on: 1)
e) Leucite = silica (SiO_2).
f) The Si:O ratio in the phyllosilicates is and in sorosilicate is
g) The oxides class of minerals are characterized by: 1
34
h) The pyroxene and amphibole groups are differ in 1
2 3
i) The chemical composition of hematite is and for gypsum is
and for zircon is
j) The crystal system of the graphite is and for opal is and
for diamond is
Q5: Draw the structure for the following: (9 marks)
a) Face centered cubic lattice.
b) Inosilicates (single chain only).

GOOD LUCK

Mineralogy First Year Time: 2 hours

Final Examination- Set 3

Q1: Define the following statements:	(16 marks)
a) Mineraloid b) Isomorphous minerals c) Zeolite group d) Streak.	
Q2: Give the reason for the following:	(16 marks)
a) Perfect and easy cleavage of graphite mineral.	
b) Actually, opal (SiO ₂ .nH ₂ O) is not regarded as mineral.	
c) Low melting point of sulphur.	
d) Cleavage planes often show pearly luster.	
Q3: Complete the following sentences with a proper words or stat	ements.
(36 marks) a) The most common minerals of phyllosilicates are: 1	
• •	•
	. 1
b) The sheet structure produces the form and chain struct	ture produces
the crystals.	
c) The pyroxenoid minerals are differing from pyroxenes	
in of the SO ₄ tetrahedra.	
d) Feldspar group fall into two subgroups:1	
e) All the minerals in tectosilicates are aluminum silicates of Na ⁺ ,	K+, Ca2+, and
Ba ²⁺ except the minerals of group.	
f) The classification of mineral species is according to the	
g) Minerals with covalent bonds are characterized by: 1.	2.
3	

h)	The			of	fractures	are:	1	•••••	2.	
i)	Give a	mineral ex								
				s. tec	tosilicate		4.	pnynosmo	zate	
j)	The thre	ee polymorp	hous min	erals o	of Al ₂ SiO ₅	are: 1		•••••	•••••	
	2		3	•••••	• • • • • • • • • • • • • • • • • • • •					
Ω4•	The folk	owing sente	ices are	either	true or fals	se Mark	x (/) in	front of t	he	
_		X) in front o						(24 mark		
a)) Variatio	on in the Mol	hs scale i	s linea	r when com	pared wi	ith absol	ute		
m	measurements. hardness									
b) Bridging oxygen is that linked the CO ₃ group with cations in silicate class.										
c) In general the increasing the complexity of silicate structure is followed by										
increasing the density and packing of ions.										
d) The pyroxene contains essential (OH) ⁻ group in the structure and the S: O										
ra	atio is 4	4:11.								
e)) Pyroxe	nes form at h	igher ten	peratu	res than do	amphibo	oles.			
f)	f) Most minerals have two or more bond types coexisting together.									
	g) Feldspathoid group is anhydrous framework silicates, and its composition									
refle	_	formation f	_					-		
		tonite and rh			onging to py	roxenoi	d group.			
		e structure i					<i>8</i> - 1	(8 mar	·ks)	
_		ilicates (3-me			- -			(0		
b)	b) Inosilicates (single chain only).									
				Good	Luck					
			Prof.	Dr. Fa	raj H. Tob	ia				