Quality control

LECTURER 3

Quality Characteristics Quality characteristics divided into two parts

- ► Measurable Characteristics The characteristics that can be quantified (measurable) also called structural characteristics such as (length, weight, temperature, size, etc).
- ► Immeasurable Characteristics The characteristics that can not be measured in units of measurement also called sensory characteristics such as (color, taste, smell, etc).

Control Charts Errors

Type one Error: (out of control / in control)
Type Two Error: (in control / out of control

Actual Condition of Process	Conclusion Based on Control Chart	
	Process In Control	Process Not In Control
In Control	Correct	Type I Error
Out of Control	Type II Error	Correct

- Process is OUT of control if: One or multiple points outside the control limits
- Process is IN control if: The sample points fall between the control limit

Types of control charts

- There are many types of control charts. The control charts that you or your team decides to use should be determined by the type of data that you have.
- Variable Control Charts
- ► □ Attribute Control Charts

1- Variable Control Charts

➤ Variable quality Control Charts These charts are used in the process of controlling and monitoring the quality of products. If the characteristics of the produced product is measurable.

Type of Variable Quality Control Charl

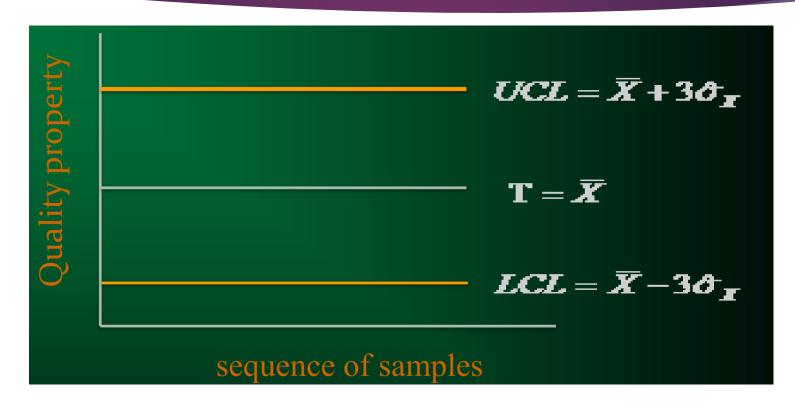
- Individual values Chart.
- b. Average Chart.
- c. Range Chart.
- d. Standard Deviation- Chart

Individual Values - Chart

This chart is used to control the <u>auality</u> of the product. The target line for this chart represents the over all average $T = \bar{x}$ for all observations of the same process. The (upper and lower) control limits are put at (±3 σ) from the target line, as shown by the following formulas:

$$UCL = \bar{x} + 3\hat{\sigma}_x$$

$$LCL = \bar{x} - 3\hat{\sigma}_x$$


where

 $\hat{(\hat{\sigma_x})}$ represents the standard division for all observations and calculated by the

following formula:

$$\hat{\sigma}_{x} = \sqrt{\frac{\sum_{i=1}^{n} x_{i}^{2} - n \overline{x}^{2}}{(n-1)}}$$

(individual values-chart)

(individual values-chart)

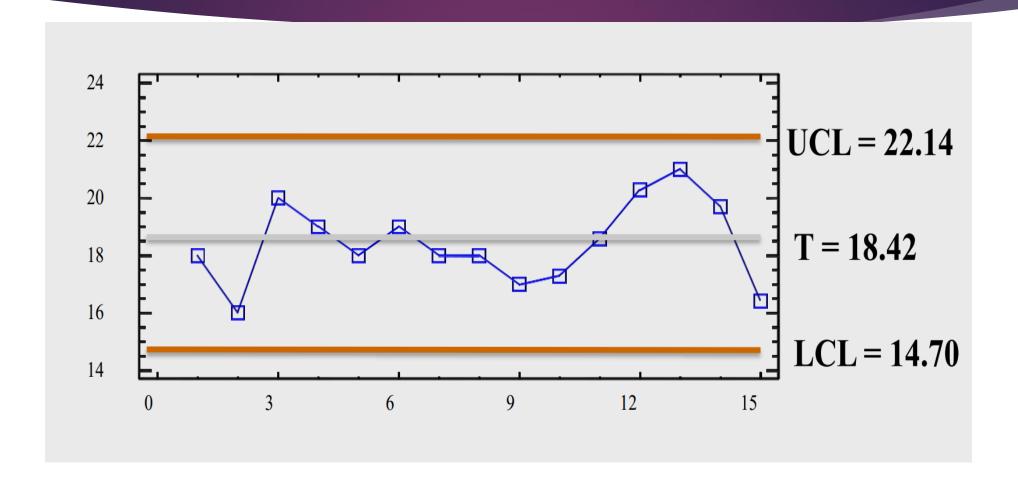
ex1:

15 random observation of cigarettes was taken and the percentage of nicotine was:

 $x_i = 18, 16, 20, 19, 18, 19, 18, 18, 17, 17.3, 18.6, 20.3, 21, 19.7, 16.4$

v individual values- chart

solution


$$\overline{x} = T = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{18 + 16 + 20 \dots + 19.7 + 16.4}{15} = 18.42$$

$$\hat{\sigma}_{x} = \sqrt{\frac{\sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2}}{n-1}} = \sqrt{\frac{((18^{2} + 16^{2} + \dots + 16.4^{2}) - (15*18.42^{2}))}{14}}$$

$$=\sqrt{\frac{(5118.39-15*(18.42)^2)}{14}}=1.44$$

$$LCL = \overline{x} - 3\hat{\sigma}_x = 18.42 - 3*1.44 = 14.70$$

$$UCL = \bar{x} + 3\hat{\sigma}_x = 18.42 + 3*1.44 = 22.14$$

