X Bar- Chart

This chart is used to control mean of produced product. The central line is $(T=\overline{X})$, the sum of a number of sample mean divided by the number of samples.

$$\bar{\bar{x}} = \frac{\sum_{j=1}^{m} \bar{x}_j}{m}$$

Where:

 \bar{x} = Average of the sample mean.

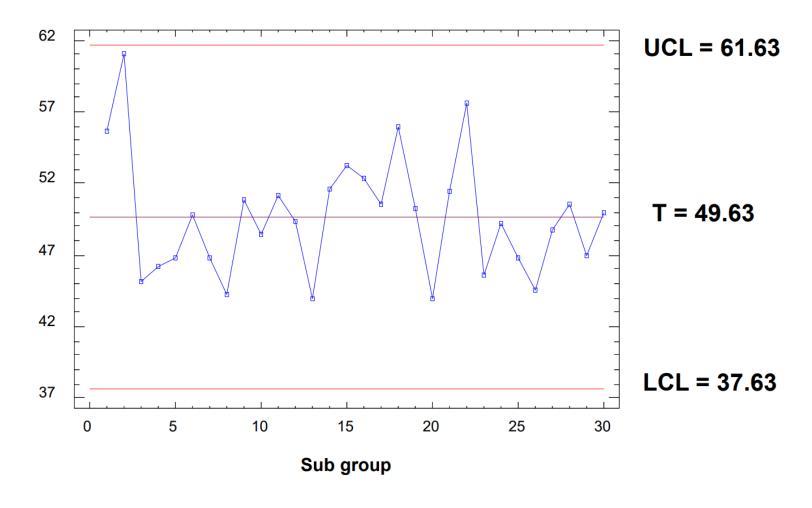
 \bar{x}_i = Average of the subgroup.

m = Number of samples (subgroup)

control limits for xbar charts is

$$UCL = x + 3\hat{\sigma}_{\overline{x}} = x + A_{2}\overline{R}$$

$$LCL = x - 3\hat{\sigma}_{\overline{x}} = x - A_{2}\overline{R}$$


$$\hat{\sigma}_{\overline{x}} = \sqrt{\frac{\sum_{i=1}^{m} \overline{x}_{i}^{2} - m x}{(m-1)}}$$

Where: (A2) The constant is tabulated value and dependent on SAMPLE SIZE

EX: draw X-bar chart.

Sample	X-bar	Sample	X-bar	Sample	X-ba	ar
1	55.6	11	51.2	21	50.0	
2	61.0	12	49.4	22	47.0	
3	45.2	13	44.0	23	50.6	
4	46.2	14	51.6	24	48.8	
5	46.8	15	53.2	25	44.6	
6	49.8	16	52.4	26	46.8	
7	46.8	17	50.6	27	49.2	
8	44.2	18	56.0	28	45.6	
9	50.8	19	50.2	29	57.6	
10	48.4	20	44.0	30	51.4	

X bar - Chart

