
Introduction to 3D 

Elasticity



Summary:

• 1D elasticity (Bar Element)

• 3D elasticity problem

• Governing differential equation

• Strain-displacement relationship

• Stress-strain relationship

• Special cases

 2D (plane stress, plane strain)

 Axisymmetric body with axisymmetric loading



1D Elasticity (Bar Element)

L = length

A  = cross-sectional area 

E = elastic modulus

u = u(x)  displacement

ε = ε(x) strain

σ = σ(x) stress

Stress-strain relation:

Strain-displacement relation: 𝜀 =
𝑑𝑢

𝑑𝑥

𝜎 = 𝐸𝜀



Assuming that the displacement u is varying linearly along the axis 

of the bar, i.e.,

𝑢 𝑥 = 1 −
𝑥

𝐿
𝑢𝑖 +

𝑥

𝐿
𝑢𝑗

we have

We also have

𝜀 =
𝑢𝑗 − 𝑢𝑖

𝐿
=

Δ

𝐿
Δ =  elongation , 𝜎 = 𝐸𝜀 =

𝐸Δ

𝐿

𝜎 =
𝐹

𝐴
 (𝐹 =  force in bar )

Thus

𝐹 =
𝐸𝐴

𝐿
Δ = 𝑘Δ



The bar is acting like a spring in this case, and we conclude 

that element stiffness matrix is

𝐤 =
𝑘 −𝑘

−𝑘 𝑘
=

𝐸𝐴

𝐿
−

𝐸𝐴

𝐿

−
𝐸𝐴

𝐿

𝐸𝐴

𝐿

or

𝐤 =
𝐸𝐴

𝐿
1 −1

−1 1

This can be verified by considering the equilibrium of the 

forces at the two nodes. 

Element equilibrium equation is
𝐸𝐴

𝐿
1 −1

−1 1

𝑢𝑖

𝑢𝑗
=

𝑓𝑖

𝑓𝑗



Problem definition
3D Elasticity
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V: Volume of body

S: Total surface of the body

The deformation at point 

x =[x,y,z]T

is given by the 3 

components of its 

displacement
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NOTE: u= u(x,y,z), i.e., each displacement component 

is a function of position



3D Elasticity: 

INTERNAL FORCES

If we take out a piece of material from the body, we will see that, 

due to the external forces applied to it, there are reaction 

forces (e.g., due to the loads applied to a truss structure, internal 

forces develop in each truss member). For the cube in the figure, 

the internal reaction forces per unit area (red arrows) , on each surface, 

may be decomposed into three orthogonal components.
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3D Elasticity
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sx, sy and sz are normal stresses.

The rest 6 are the shear stresses

Convention

txy is the stress on the face 

perpendicular to the x-axis and points 

in the +ve y direction

Total of 9 stress components

 of which only 6 are

 independent since xzzx

zyyz

yxxy

tt

tt

tt

=

=
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The stress vector 

is therefore 6 independent 

strain components
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BODY FORCE
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Xa dV
Xb dV

Xc dV
Volume 

element dV

1. Body force: distributed force per unit volume (e.g., weight, 

inertia, etc)
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SURFACE TRACTION

2. Surface traction (force per unit surface area) e.g., friction

In FEM, all types of loads (distributed surface loads, 
body forces, concentrated forces and moments, etc.) 
are converted to point forces acting at the nodes. 



Consider the equilibrium of a differential volume element to 

obtain the 3 equilibrium equations of elasticity
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Compactly;

0=+ X
T
s
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Strain-displacement relationships in 3D elasticity problem :
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Compactly; u=
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Stress-Strain relationship in 3D elasticity problem:

Linear elastic material (Hooke’s Law)

s D= (3)

Linear elastic isotropic material
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Plane Stress and Plane Strain

Plane stress is defined to be a state of stress in which the 

normal stress and the shear stresses directed perpendicular 

to the plane are assumed to be zero.
 
𝝈𝒛 = 𝝉𝒙𝒛 = 𝝉𝒚𝒛 = 𝟎

Plane strain is defined to be a state of strain in which the 

strain normal to the x – y plane 𝜀𝑧 and the shear strains 𝛾𝑥𝑧 

and 𝛾𝑦𝑧 are assumed to be zero.

𝜺𝒛 = 𝜸𝒙𝒛 = 𝜸𝒚𝒛 = 𝟎



PLANE STRESS: Only the in-plane stress components are nonzero
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PLANE STRESS Examples:

1. Thin plate with a hole

2. Thin cantilever plate
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Non-zero strains: xyzyx  ,,,

Isotropic linear elastic stress-strain law
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PLANE STRAIN: Only the in-plane strain components are non-zero
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PLANE STRAIN Examples:

1. Dam

2. Long cylindrical pressure vessel subjected to internal/external 

pressure and constrained at the ends
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thickness
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Nonzero stress: 

Isotropic linear elastic stress-strain law
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Example problem
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The square block is in plane strain 

and is subjected to the following 

strains
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Compute the displacement field (i.e., displacement components 

u(x,y) and v(x,y)) within the block



Solution

Recall from definition
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Plug expressions in (4) and (5) into equation (3)
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Use the 3 boundary conditions
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