Introduction to 3D Elasticity

Summary:

- 1D elasticity (Bar Element)
- 3D elasticity problem
- Governing differential equation
- Strain-displacement relationship
- Stress-strain relationship
- Special cases

2D (plane stress, plane strain)
Axisymmetric body with axisymmetric loading

1D Elasticity (Bar Element)

$\mathrm{L}=$ length
$\mathrm{A}=$ cross-sectional area
$\mathrm{E}=$ elastic modulus
$\mathrm{u}=\mathrm{u}(\mathrm{x})$ displacement
$\varepsilon=\varepsilon(\mathrm{x})$ strain
$\sigma=\sigma(\mathrm{x})$ stress

Strain-displacement relation: $\quad \varepsilon=\frac{d u}{d x}$

Stress-strain relation:

$$
\sigma=E \varepsilon
$$

Assuming that the displacement u is varying linearly along the axis of the bar, i.e.,

$$
u(x)=\left(1-\frac{x}{L}\right) u_{i}+\frac{x}{L} u_{j}
$$

we have

$$
\varepsilon=\frac{u_{j}-u_{i}}{L}=\frac{\Delta}{L}(\Delta=\text { elongation }), \quad \sigma=E \varepsilon=\frac{E \Delta}{L}
$$

We also have

$$
\sigma=\frac{F}{A}(F=\text { force in bar })
$$

Thus

$$
F=\frac{E A}{L} \Delta=k \Delta
$$

The bar is acting like a spring in this case, and we conclude that element stiffness matrix is

$$
\mathbf{k}=\left[\begin{array}{cc}
k & -k \\
-k & k
\end{array}\right]=\left[\begin{array}{cc}
\frac{E A}{L} & -\frac{E A}{L} \\
-\frac{E A}{L} & \frac{E A}{L}
\end{array}\right]
$$

or

$$
\mathbf{k}=\frac{E A}{L}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

This can be verified by considering the equilibrium of the forces at the two nodes.

Element equilibrium equation is $\quad \frac{E A}{L}\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]\left\{\begin{array}{l}u_{i} \\ u_{j}\end{array}\right\}=\left\{\begin{array}{l}f_{i} \\ f_{j}\end{array}\right\}$

3D Elasticity

Problem definition

V: Volume of body
S: Total surface of the body

The deformation at point $\underline{x}=[x, y, z]^{T}$
is given by the 3
$\begin{aligned} & \text { components of its } \\ & \text { displacement }\end{aligned} \quad \underline{u}=\left\{\begin{array}{l}v \\ w\end{array}\right\}$

NOTE: $\underline{u}=\underline{u}(x, y, z)$, i.e., each displacement component is a function of position

If we take out a piece of material from the body, we will see that, due to the external forces applied to it, there are reaction forces (e.g., due to the loads applied to a truss structure, internal forces develop in each truss member). For the cube in the figure, the internal reaction forces per unit area (red arrows), on each surface, may be decomposed into three orthogonal components.

3D Elasticity

σ_{x}, σ_{y} and σ_{z} are normal stresses. The rest 6 are the shear stresses Convention
$\tau_{x y}$ is the stress on the face perpendicular to the x -axis and points in the +ve y direction Total of 9 stress components of which only 6 are $\tau_{y z}=\tau_{z y}$ independent since

$$
\tau_{z x}=\tau_{x z}
$$

6 independent
strain components
$\underline{\varepsilon}$

\varepsilon_{y}

\varepsilon_{z}

\gamma_{x y}

\gamma_{y z}

\gamma_{z x}\end{array}\right\}\)

BODY FORCE

EXTERNAL FORCES ACTING ON THE BODY

1. Body force: distributed force per unit volume (e.g., weight, inertia, etc)

$$
\underline{X}=\left\{\begin{array}{l}
X_{a} \\
X_{b} \\
X_{c}
\end{array}\right\}
$$

SURFACE TRACTION

2. Surface traction (force per unit surface area) e.g., friction

y In FEM, all types of loads (distributed surface loads, body forces, concentrated forces and moments, etc.) are converted to point forces acting at the nodes.

Consider the equilibrium of a differential volume element to obtain the 3 equilibrium equations of elasticity

$$
\begin{aligned}
& \frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}+\frac{\partial \tau_{x z}}{\partial z}+X_{a}=0 \\
& \frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \sigma_{y}}{\partial y}+\frac{\partial \tau_{y z}}{\partial z}+X_{b}=0 \\
& \frac{\partial \tau_{x z}}{\partial x}+\frac{\partial \tau_{y z}}{\partial y}+\frac{\partial \sigma_{z}}{\partial z}+X_{c}=0
\end{aligned}
$$

Compactly;

EQUILIBRIUM EQUATIONS
 $$
\begin{equation*} \underline{\hat{\partial}}^{T} \underline{\sigma}+\underline{X}=\underline{0} \tag{1} \end{equation*}
$$

where

$$
\underline{\partial}=\left[\begin{array}{ccc}
\frac{\partial}{\partial x} & 0 & 0 \\
0 & \frac{\partial}{\partial y} & 0 \\
0 & 0 & \frac{\partial}{\partial z} \\
\frac{\partial}{\partial y} & \frac{\partial}{\partial x} & 0 \\
0 & \frac{\partial}{\partial z} & \frac{\partial}{\partial y} \\
\frac{\partial}{\partial z} & 0 & \frac{\partial}{\partial x}
\end{array}\right]
$$

Strain-displacement relationships in 3D elasticity problem :

$$
\begin{gathered}
\varepsilon_{x}=\frac{\partial u}{\partial x} \\
\varepsilon_{y}=\frac{\partial v}{\partial y} \\
\varepsilon_{z}=\frac{\partial w}{\partial z} \\
\gamma_{x y}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x} \\
\gamma_{y z}=\frac{\partial v}{\partial z}+\frac{\partial w}{\partial y} \\
\gamma_{z x}=\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}
\end{gathered}
$$

Compactly; $\underline{\underline{\varepsilon}=\underline{\partial} \underline{u}}$

$$
\underline{\varepsilon}=\left\{\begin{array}{l}
\varepsilon_{x} \\
\varepsilon_{y} \tag{2}\\
\varepsilon_{z} \\
\gamma_{x y} \\
\gamma_{y z} \\
\gamma_{z x}
\end{array}\right\} \quad \underline{\partial}=\left[\begin{array}{ccc}
\frac{\partial}{\partial x} & 0 & 0 \\
0 & \frac{\partial}{\partial y} & 0 \\
0 & 0 & \frac{\partial}{\partial z} \\
\frac{\partial}{\partial y} & \frac{\partial}{\partial x} & 0 \\
0 & \frac{\partial}{\partial z} & \frac{\partial}{\partial y} \\
\frac{\partial}{\partial z} & 0 & \frac{\partial}{\partial x}
\end{array}\right] \quad \underline{\mathrm{u}}=\left\{\begin{array}{c}
\mathrm{u} \\
\mathrm{v} \\
\mathrm{w}
\end{array}\right\}
$$

In 2D

$$
\varepsilon_{x}=\frac{A^{\prime} B^{\prime}-A B}{A B}=\frac{\left(\mathrm{dx}+\left(\mathrm{u}+\frac{\partial \mathrm{u}}{\partial \mathrm{x}} \mathrm{dx}\right)-\mathrm{u}\right)-\mathrm{dx}}{\mathrm{dx}}=\frac{\partial \mathrm{u}}{\partial \mathrm{x}}
$$

$$
\varepsilon_{y}=\frac{\mathrm{A}^{\prime} \mathrm{C}^{\prime}-\mathrm{AC}}{\mathrm{AC}}=\frac{\left(\mathrm{dy}+\left(\mathrm{v}+\frac{\partial \mathrm{v}}{\partial \mathrm{y}} \mathrm{dy}\right)-\mathrm{v}\right)-\mathrm{dy}}{\mathrm{dy}}=\frac{\partial \mathrm{v}}{\partial \mathrm{y}}
$$

$$
\gamma_{x y}=\frac{\pi}{2}-\text { angle }\left(C^{\prime} \mathrm{A}^{\prime} \mathrm{B}^{\prime}\right)=\beta_{1}+\beta_{2} \approx \tan \beta_{1}+\tan \beta_{2}
$$

$$
\approx \frac{\partial v}{\partial x}+\frac{\partial u}{\partial x}
$$

Stress-Strain relationship in 3D elasticity problem:

Linear elastic material (Hooke's Law)

$$
\begin{equation*}
\underline{\underline{\sigma}}=\underline{D} \underline{\varepsilon} \tag{3}
\end{equation*}
$$

Linear elastic isotropic material

$$
\underline{D}=\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{cccccc}
1-v & v & v & 0 & 0 & 0 \\
v & 1-v & v & 0 & 0 & 0 \\
v & v & 1-v & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1-2 v}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1-2 v}{2} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1-2 v}{2}
\end{array}\right]
$$

Plane Stress and Plane Strain

Plane stress is defined to be a state of stress in which the normal stress and the shear stresses directed perpendicular to the plane are assumed to be zero.

$$
\sigma_{z}=\tau_{x z}=\tau_{y z}=\mathbf{0}
$$

Plane strain is defined to be a state of strain in which the strain normal to the $\mathrm{x}-\mathrm{y}$ plane ε_{z} and the shear strains $\gamma_{x z}$ and $\gamma_{y z}$ are assumed to be zero.

$$
\varepsilon_{z}=\gamma_{x z}=\gamma_{y z}=0
$$

PLANE STRESS: Only the in-plane stress components are nonzero

■ Figure 6-1 Plane stress problems: (a) plate with hole; (b) plate with fillet

PLANE STRESS Examples:

1. Thin plate with a hole

2. Thin cantilever plate

PLANE STRESS

Non-zero stresses: $\sigma_{x}, \sigma_{y}, \tau_{x y}$
Non-zero strains: $\quad \varepsilon_{x}, \varepsilon_{y}, \varepsilon_{z}, \gamma_{x y}$

Isotropic linear elastic stress-strain law $\underline{\sigma}=\underline{D} \underline{\varepsilon}$

$$
\left\{\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}=\frac{E}{1-v^{2}}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & \frac{1-v}{2}
\end{array}\right]\left\{\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right\} \quad \varepsilon_{z}=-\frac{v}{1-v}\left(\varepsilon_{x}+\varepsilon_{y}\right)
$$

Hence, the \underline{D} matrix for the plane stress case is

$$
\underline{D}=\frac{E}{1-v^{2}}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & \frac{1-v}{2}
\end{array}\right]
$$

PLANE STRAIN: Only the in-plane strain components are non-zero

PLANE STRAIN Examples:

2. Long cylindrical pressure vessel subjected to internal/external pressure and constrained at the ends

PLANE STRAIN

Nonzero stress: $\quad \sigma_{x}, \sigma_{y}, \sigma_{z}, \tau_{x y}$
Nonzero strain components: $\varepsilon_{x}, \varepsilon_{y}, \gamma_{x y}$ Isotropic linear elastic stress-strain law $\underline{\sigma}=\underline{D} \underline{\varepsilon}$

$$
\left\{\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}=\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{ccc}
1-v & v & 0 \\
v & 1-v & 0 \\
0 & 0 & \frac{1-2 v}{2}
\end{array}\right]\left\{\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right\} \quad \sigma_{z}=v\left(\sigma_{x}+\sigma_{y}\right)
$$

Hence, the \underline{D} matrix for the plane strain case is

$$
\underline{D}=\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{ccc}
1-v & v & 0 \\
v & 1-v & 0 \\
0 & 0 & \frac{1-2 v}{2}
\end{array}\right]
$$

Compute the displacement field (i.e., displacement components $\mathbf{u}(\mathbf{x}, \mathrm{y})$ and $\mathbf{v}(\mathbf{x}, \mathrm{y})$) within the block

Solution

Recall from definition

$$
\begin{align*}
& \varepsilon_{x}=\frac{\partial u}{\partial x}=2 x y \tag{1}\\
& \varepsilon_{y}=\frac{\partial v}{\partial y}=3 x y^{2} \tag{2}
\end{align*}
$$

$\gamma_{x y}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}=x^{2}+y^{3}$
Integrating (1) and (2)

$$
\begin{aligned}
& u(x, y)=x^{2} y+C_{1}(y) \\
& v(x, y)=x y^{3}+C_{2}(x)
\end{aligned}
$$

Plug expressions in (4) and (5) into equation (3)

$$
\begin{align*}
& \frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}=x^{2}+y^{3} \tag{3}\\
& \Rightarrow \frac{\partial\left[x^{2} y+C_{1}(y)\right]}{\partial y}+\frac{\partial\left[x y^{3}+C_{2}(x)\right]}{\partial x}=x^{2}+y^{3} \\
& \Rightarrow x^{2}+\frac{\partial C_{1}(y)}{\partial y}+y^{3}+\frac{\partial C_{2}(x)}{\partial x}=x^{2}+y^{3} \\
& \Rightarrow \frac{\partial C_{1}(y)}{\partial y}+\frac{\partial C_{2}(x)}{\partial x}=0
\end{align*}
$$

Function of ' y '
Function of ' x '

Hence

$$
\frac{\partial C_{1}(y)}{\partial y}=-\frac{\partial C_{2}(x)}{\partial x}=C(\text { a constant })
$$

Integrate to obtain

$$
\begin{array}{ll}
C_{1}(y)=C y+D_{1} & \mathrm{D}_{1} \text { and } \mathrm{D}_{2} \text { are two constants of } \\
C_{2}(x)-C x+D_{2} & \text { integration }
\end{array}
$$

Plug these back into equations (4) and (5)
(4) $u(x, y)=x^{2} y+C y+D_{1}$
(5) $v(x, y)=x y^{3}-C x+D_{2}$

How to find $\mathrm{C}, \mathrm{D}_{1}$ and D_{2} ?

Use the 3 boundary conditions

$$
\begin{gathered}
u(0,0)=0 \\
v(0,0)=0 \\
v(2,0)=0 \\
\text { To obtain } \\
C=0 \\
D_{1}=0 \\
D_{2}=0
\end{gathered}
$$

Hence the solution is

$$
\begin{aligned}
& u(x, y)=x^{2} y \\
& v(x, y)=x y^{3}
\end{aligned}
$$

