Introduction to 3D
Elasticity



Summary:
* 1D elasticity (Bar Element)
* 3D elasticity problem
* Governing differential equation
 Strain-displacement relationship
* Stress-strain relationship
* Special cases
2D (plane stress, plane strain)
Axisymmetric body with axisymmetric loading




1D Elasticity (Bar Element)
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Strain-displacement relation:

Stress-strain relation:

L = length

A = cross-sectional area
E = elastic modulus
u=1u(x) displacement

& = &(X) strain

o = 6(X) stress



Assuming that the displacement u 1s varying linearly along the axis
of the bar, 1.e.,
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U — U A EA
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We also have
o= (F = force in bar )
Thus
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The bar is acting like a spring in this case, and we conclude
that element stiffness matrix is
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This can be verified by considering the equilibrium of the
forces at the two nodes.

EA —17 (Ui '
Element equilibrium equation 1s —[ ! : { l} - {fl}



3D Elasticity

Problem definition

V: Volume of body

Surface (S) S: Total surface of the body
1 \Y% . .
W e (V) The deformation at point
& :[X9Y9Z]T (
u N 1s given by the 3 !
Z - components of its Y=V (
7 displacement W
v

NOTE: u=u(x,y,z), 1.€., each displacement component
1s a function of position



3D Elasticity:

INTERNAL FORCES
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If we take out a piece of material from the body, we will see that,

due to the external forces applied to it, there are reaction

forces (e.g., due to the loads applied to a truss structure, internal

forces develop in each truss member). For the cube in the figure,

the internal reaction forces per unit area (red arrows) , on each surface,
may be decomposed into three orthogonal components.




G 3D Elasticity

The stress vector

1s therefore

T Oy, O, and ¢, are normal stresses.
T The rest 6 are the shear stresses
T)" T, .
t Convention
TXZ 2 / 9] .
T % 1, 18 the stress on the face
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o, in the +ve y direction ro=1
Y X
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BODY FORCE
EXTERNAL FORCES ACTING ON THE BODY

1. Body force: distributed force per unit volume (e.g., weight,
inertia, etc)

Volume
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/}—» Xb dV
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SURFACE TRACTION

2. Surface traction (force per unit surface area) e.g., friction
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P
y: In FEM, all types of loads (distributed surface loads,

body forces, concentrated forces and moments, etc.)
are converted to point forces acting at the nodes.



Consider the equilibrium of a differential volume element to
obtain the 3 equilibrium equations of elasticity
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Compactly;

EQUILIBRIUM
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Strain-displacement relationships in 3D elasticity problem :




Compactly;
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In 2D

u+—dx
OX
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&TTAB _ dx ~ ox
\4
_AC—AC (dy+ (V+Wdy) —V) —dy_ v
&y = Ac - dy ~ dy
Yy = 5 angle (C'A'B") = B; + B, =~ tanf; + tanf,
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Stress-Strain relationship in 3D elasticity problem:

Linear elastic material (Hooke’s Law)
g=Ds¢ 3)

Linear elastic 1sotropic material

1-v v 1% 0 0
v 1l-v v 0 0
1% v 1-v 0 0
p-_ E 0o 0o o =2 o
(1+v)(1-2v) ; ; ; 1=
2
0 0 0 0
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Plane Stress and Plane Strain

Plane stress 1s defined to be a state of stress in which the
normal stress and the shear stresses directed perpendicular

to the plane are assumed to be zero. 'y Ly

O, =Ty; =Ty, =0

A

Plane strain 1s defined to be a state of strain in which the

strain normal to the x — y plane ¢, and the shear strains y,.,
and y,,, are assumed to be zero. Ly Ly
£z=)’xz=)’yz=0 -l 5

sz




PLANE STRESS: Only the in-plane stress components are nonzero

Area
element dA

Non-zero stress components o, Oy, Txy
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W Figure 6-1 Plane stress problems: (a) plate with hole; (b) plate with fillet



PLANE STRESS Examples:
1. Thin plate with a hole

PItrt

AN

2. Thin cantilever plate




Plane STRESS no z-stress y -stress
Xy - shear
stress

X -stress

: X -stress

xy - shear

stress
¥ - stress

(constant
through t)

5 / y -stress
y -stress (constant

through t)



PLANE STRESS

Non-zero stresses: 0.,0,,7,,

Non-zero strains:

I[sotropic linear elastic stress-strain law
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Hence, the D matrix for the plane stress case 1s
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PLANE STRAIN: Only the in-plane strain components are non-zero

Non-zero strain components £y, €y, ¥ xy

Area
element dA

1. Displacement components u,v functions
of (x,y) only and w=0
2. Top and bottom surfaces are fixed




PLANE STRAIN Examples:
1. Dam

Slice of unit
thickness

y

) §

2. Long cylindrical pressure vessel subjected to internal/external
pressure and constrained at the ends




Nonzero stress:

PLANE STRAIN

0,,0,,0,

Dz-xy

Nonzero strain components: €,,¢€,,7,,

I[sotropic linear elastic stress-strain law
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Plane stress

Plane strain
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Example problem

The square block 1s in plane strain
and 1s subjected to the following
strains

A
A 4

&, =2xy

777 /é‘)—/ :X = 2
g, =3xy
2 3
]/xy =X +Yy

Compute the displacement field (i.e., displacement components
u(x,y) and v(x,y)) within the block



Solution

Recall from definition

E =—=2x 1
ov

g =—=3xy° 2
ou ov ,

Arbitrary function of ‘x’
Integrating (1) and (V
u(x,y)=x"y +C,(»)" (4

5

V5, 2) =30+ Gy (%) U\

Arbitrary function of ‘y’



Plug expressions in (4) and (5) into equation (3)
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Function of ‘y’ Function of x’

=x"+y" (3)

=x" 4’




Hence
0C,(y) __ 9C,(x)
oy Ox

Integrate to obtain

= C (a constant)

C(y)=Cy+D, D, and D, are two constants of
C,(x)-Cx+D,  integration

Plug these back into equations (4) and (5)
(4) u(x,y)=x"y +Cy+D,
(5) v(x,y)=xy"—Cx+D,

How to find C, D, and D,?



Use the 3 boundary conditions

1(0,0) = 0
1(0,0) =0
v(2,0) =0

To obtain
C=0

D, =0
D, =0

Hence the solution is

u(x,y)=x"y
v(x,y)=xy’

A
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