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Lecture - 3

• Inclined Surface

• Stress Invariants

• Maximum Shear Stress
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• As it was noted, if the loaded body is in equilibrium, then any of 
its cut parts must also be in equilibrium, i.e. the principal vector 
and the principal moment of all loads applied to this part must 
be equal to zero. This also applies to the surface of the body. In 
general, the surface of a body, like any of its elementary plane, is 
inclined to coordinate axes.

• An external load may be applied to this surface. Therefore, it is 
necessary to establish a relationship between the projections of 
the external load (external stress) on a small inclined plane and 
the stresses arising at the faces parallel to the coordinate Planes.
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• Extract from the body the elementary tetrahedron Oabc (Fig.) with the 
planes Oa = dx, Ob = dy, and Oc = dz. For the inclined plane abc, draw the 
normal vector ν . 

• Denote the cosines of its inclination angles with the x, y, and z coordinate 
axes, respectively: cos(x, ν), cos(y, ν) and cos(z, ν), i.e. the cosines of the 
angles between the external normal ν and the x, y, and z coordinate axes, 
respectively, through l, m, and n: cos(x, ν) = l, cos(y, ν) = m and cos(z, ν) = n.
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• Suppose the total external stress is p, then its 
components will be Xν, Yν, and Zν. 

• If we denote the area of the inclined face abc by dA, 
then the areas of the faces coinciding with the 
coordinate planes will be, respectively:

The equilibrium equation on the x-axis, i.e. ∑ X = 0:
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• In the same way, we get the other two equations with respect to the y and z axes.

In the case of a plane stress state, we will have:
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Investigation of the stress state at the point 
of the body. 
By equation

It is possible to compute the stress 
components Xν, Yν, and Zν of the stress pν 
at any inclined plane.
The total stress pν is computed as the 
geometric sum of these components Xν, Yν, 
and Zν:
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• Decompose the obtained total stress pν into its 
components along the normal ν and along the 
plane of the face, i.e. into the normal σν and 
the shear τν stress (Fig.).
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The normal stress σν is calculated as the sum 
of the projections of the components Xν, Yν 
and Zν on the ν axis.

or
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• The shear stress is calculated from a right-angled triangle according to the 
Pythagorean theorem:

This formula only gives the value of the shear stress, but does not specify
its direction is in the plane of the site.

Find the component of the shear stress in 
the plane with the normal ν in the given 
direction η with direction cosines l1, m1, 

n1 (Fig. ). Since the directions of ν and η are 
mutually perpendicular, their direction 
cosines, known from analytic geometry:
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• The desired shear stress is equal to the sum of the projections of the 
stress components Xν, Yν, Zν on the direction of η

Substituting here the values of the constituents Xν, Yν, and Zν :

If we take τν = 0 in the expression (below), we get that pν = σν, i.e. on the 
principal plane the  total stress pν coincides with the normal σν in magnitude 
and direction.

Using the condition τν = 0, we determine the value of the principal stresses and the 
position of the principal planes. Let's denote the principal stress with the letter σ. 
By projecting the σ onto the coordinate axes, we find its components
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• Three linear homogeneous equations with respect to l, m, and n were obtained.
In our case, the system can't have a zero l=m=n=0 solution:

Therefore, the system can have solutions at zero determinant

or
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• After multiplying and grouping by powers of σ, we get the cubic equation:

or shorter

Where:

To solve the cubic equation, we use the following substitution

Equation would then take the form
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• All three roots, σ1, σ2 and σ3, are valid when the discriminant is negative:

If substitute the corresponding numerical values of the coefficients S1, S2, S3 into the 
expressions for p and q, and then compute ∆, you can see that ∆ is always negative. This 
also follows from physical considerations: the principal stresses can only be real quantities.

At Δ<0, the so-called trigonometric method is used to solve the cubic equation

In this case, the roots of the below cubic equation can be represented as 
follows
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• For the subsequent determination of the principal stresses σ1, σ2 and σ3, the 
determined values of the roots x1, x2 and x3 are substituted into the expression 
below:

Assuming:

To find the cosines of any principal stresses σi (i = 1, 2, 3) , we need to
insert its value into equations 

 and then solve together with equation 

 any two of them. For example:
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• Cosines are found in the same way for the other two principal stresses.
The obtained cosine values correspond to the principal stresses, which are 
mutually perpendicular, so the principal plane will be mutually perpendicular. This 
proves that at any point of a stressed body it is possible to draw three mutually 
perpendicular principal planes. In this particular case:

Obviously, the roots of the cubic equation cannot depend on the choice of 
coordinate axes, therefore, its coefficients S1, S2, S3 must remain constant 
when transforming the axes, i.e. they must essentially be invariants.
The first invariant is called the value

It shows that the sum of the normal stresses at the three mutually perpendicular 
planes is a constant quantity.

20



D
r.

 F
ei

ru
sh

a 
Ka

ks
h

ar
, U

K
H

• The second invariant is:

It is used in the theory of plasticity.

The third invariant is the quantity that is the determinant composed from the 
stress tensor elements:
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• The shown stresses act on the element at 
the critical section of the cast-iron member 
(in MPa). Check the strength of the 
member. 

21-Nov-23 22

The plane on which τ=0  is principal plane 
(perpendicular to z axis

Let show stress state on the other two planes in x0z plane

Principal Stresses
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The x, y, and z coordinate axes are 
compatible with the directions of the 
previously found principal stresses σ1, σ2, 
σ3. Let's draw an arbitrary plane ABC with 
the area dA and the normal ν.
Let the total stress acting on this plane be 
equal to pν, its components in the x, y, z 
axes are equal to Xν, Yν and Zν, and the 
normal and shear stresses at the plane dA 
are equal to σν and τν. We have obvious 
equations.
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By projecting Xν, Yν, and Zν in the direction ν, we get the expression for σν
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Substituting the equation 𝑛2 = 1 - 𝑙2 - 𝑚2, obtained from the geometric relation 
𝑛2 +𝑙2 + 𝑚2 = 1  we get the following expression for 𝜏2𝜈. 
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• Thus, the magnitude of the shear stress τν depends on two independent 
variables l and m. To determine the extremum of this magnitude, it is 
necessary to take the partial derivatives of τν by l and m and equate them 
to zero:
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After reducing the first equation by (σ1 - σ3) and the second by (σ2 - σ3), we 
get the following system of equations for finding the values l, m, n that satisfy 
the conditions of the extremum of the shear stress τν:
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• The conditions l=0 and n=1 correspond to the principal planes 
where the shear stresses are zero.

• If l≠0 and m=0, then the second equation is satisfied at any 
values of l, and the first equation is satisfied at

27

From where 2l2 = 1 and 𝑙 = ± ൗ1
√2

. Then, from the third 

equation

For n we get 𝑛 = ± ൗ1
√2

.

The same can be obtained with l=0 and m≠0 by the second 
equation m=±1⁄(√2) and from the third equation n=±1⁄(√2)
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• As a result, for angles indicating the direction of extreme plane
shear stresses, we get Table.
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• The first three rows of the table 
correspond to the directions of the ν 
normal that coincide with the principal 
axes of coordinates

(𝜏 = 0).

29

The other three rows correspond to the planes that pass through one of the 
principal axes and divide the corner between the other two in half.

Thus, the planes of extreme shear stresses are at an angle of 45° with the principal planes. 
Substituting in the expression –

Since

for τν value l, m, n, turning it into an extremum, we get the following extreme Shear 
Stress Values:
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1-Determine the maximum shear stress for the stress state: 

 σ1=120 MPa       σ2 =50 MPa      σ3=-60 MPa

2- Determine the stress invariants in a body under stress state shown by below matrix:

10 −8 −4
−8 8 5
−4 5 −5

All stresses are in MPa

3- A body is under a direct tensile stress of 400 MPa in one plane and a shear stress of 

150 MPa on the same plane.

Determine the maximum normal stress on this plane.
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