Question bank:

Q1\ Verify that $\sqrt{2} |z| \ge |\text{Re } z| + |\text{Im } z|$.

Q2 $\$ In each case, sketch the set of points determined by the given condition:

(a) |z-1+i| = 1; (b) $|z+i| \le 3$; (c) $|z-4i| \ge 4$.

Q3\ Sketch the set of points determined by the condition

(a) $\operatorname{Re}(z-i) = 2$; (b) |2z + i| = 4.

Q4\ If z1z2 = 0, then at least one of the numbers z1 and z2 must be zero.

Q5 $\$ Show that:

(*a*) z is real if and only if $\overline{z} = z$;

(b) z is either real or pure imaginary if and only if $\overline{z}^2 = z^2$.

Q6\ Show that the hyperbola $x^2 - y^2 = 1$ can be written as $\overline{z}^2 + z^2 = 2$.

Q7\ Find the principal argument Arg z when

(a) z = -2 - 2i (b) $z = (\sqrt{3} - i)$.

Q8 $\$ Establish the equation

$$1 + z + z^2 + \cdots + z^n = \frac{1 - z^{n+1}}{1 - z}, \ z \neq 1.$$

Q9\ Sketch the following sets and determine which are regions:

(a)
$$|z - 2 + i| \le 1$$
; (b) $|2z + 3| > 4$;
(c) Im $z > 1$; (d) Im $z = 1$;
(e) $0 \le \arg z \le \pi/4$

(f) $|z - 4| \ge |z|$.

Q10 \setminus For each of the functions below, describe the domain of definition that is understood:

(a)
$$f(z) = \frac{1}{1-z^2}$$
; (b) $f(z) = \text{Arg}(z-i)$

Q11\ Prove that (a) lim Re z = Re z0 $z \rightarrow z0$

(b) $\lim \bar{z} = \overline{z0}$; $z \rightarrow z0$ Q12\ Show that a polynomial $P(z) = a_0 + a_1 z + a_2 z^2 + \cdots + a_n z^n$ of degree $n \ (n \ge 1)$ is differentiable everywhere, with derivative

Q13\ Let f denote the function whose values are

$$f(z) = \begin{cases} \frac{\bar{z}}{z} , & z \neq 0\\ 0 , & z = 0 \end{cases}$$

Show that f is not differentiable every where.

Q14\ Let f: $C \rightarrow C$ is defined by $f(z) = \cos x \cosh y - i \sin x \sinh y$.

Is f an analytic function on C?

Q15\ Show that u(x, y) is harmonic in some domain and find a harmonic conjugate v(x, y)When:

(a) u(x, y) = 2x(1 - y); (b) $u(x, y) = 2x - x^3 + 3xy^2;$

(c) $u(x, y) = \sinh x \sin y$; (d) $u(x, y) = y/(x^2 + y^2)$.

Q16\ Show that if v and V are harmonic conjugates of u(x, y) in a domain D, then v(x, y) and V (x, y) can differ at most by an additive constant.

Q17\ For the functions f and paths C, evaluate the integral of f(z) = (z + 2)/z and C is:

(a) the semicircle $z = 2 ei\theta (0 \le \theta \le \pi)$;

(b) the semicircle $z = 2 ei\theta \ (\pi \le \theta \le 2\pi)$;

(c) the circle $z = 2 ei\theta \ (0 \le \theta \le 2\pi)$.

Ans. (a) $-4 + 2\pi i$; (b) $4 + 2\pi i$; (c) $4\pi i$.

Q18\ f (z) = z - 1 and C is the arc from z = 0 to z = 2 consisting of

(a) the semicircle $z = 1 + ei\theta \ (\pi \le \theta \le 2\pi)$;

(b) the segment z = x ($0 \le x \le 2$) of the real axis.

Ans. (a) 0 ; (b) 0.

Q19 \setminus Give an example to apply Cauchy Goursat Theorem.

Q20\ Is the addition of two convergent series give an other convergent series?

- 1. Apply the theorem in Sec. 22 to verify that each of these functions is entire:
 - (a) f(z) = 3x + y + i(3y x); (b) $f(z) = \sin x \cosh y + i \cos x \sinh y;$
 - (c) $f(z) = e^{-y} \sin x i e^{-y} \cos x$; (d) $f(z) = (z^2 2)e^{-x}e^{-iy}$.
- With the aid of the theorem in Sec. 21, show that each of these functions is nowhere analytic:

(a) f(z) = xy + iy; (b) $f(z) = 2xy + i(x^2 - y^2);$ (c) $f(z) = e^y e^{ix}.$

- **3.** State why a composition of two entire functions is entire. Also, state why any *linear* combination $c_1 f_1(z) + c_2 f_2(z)$ of two entire functions, where c_1 and c_2 are complex constants, is entire.
- 4. In each case, determine the singular points of the function and state why the function is analytic everywhere except at those points:

(a)
$$f(z) = \frac{2z+1}{z(z^2+1)}$$
; (b) $f(z) = \frac{z^3+i}{z^2-3z+2}$; (c) $f(z) = \frac{z^2+1}{(z+2)(z^2+2z+2)}$
Ans. (a) $z = 0, \pm i$; (b) $z = 1, 2$; (c) $z = -2, -1 \pm i$.

 Let a function f be analytic everywhere in a domain D. Prove that if f(z) is realvalued for all z in D, then f(z) must be constant throughtout D.

EXERCISES

1. Show that u(x, y) is harmonic in some domain and find a harmonic conjugate v(x, y) when

(a)
$$u(x, y) = 2x(1 - y);$$

(b) $u(x, y) = 2x - x^3 + 3xy^2;$
(c) $u(x, y) = \sinh x \sin y;$
(d) $u(x, y) = y/(x^2 + y^2).$
Ans. (a) $v(x, y) = x^2 - y^2 + 2y;$
(b) $v(x, y) = 2y - 3x^2y + y^3;$
(c) $v(x, y) = -\cosh x \cos y;$
(d) $v(x, y) = x/(x^2 + y^2).$

- **2.** Show that if v and V are harmonic conjugates of u(x, y) in a domain D, then v(x, y) and V(x, y) can differ at most by an additive constant.
- 3. Suppose that v is a harmonic conjugate of u in a domain D and also that u is a harmonic conjugate of v in D. Show how it follows that both u(x, y) and v(x, y) must be constant throughout D.
- Use Theorem 2 in Sec. 26 to show that v is a harmonic conjugate of u in a domain D if and only if −u is a harmonic conjugate of v in D. (Compare with the result obtained in Exercise 3.)

Suggestion: Observe that the function f(z) = u(x, y) + iv(x, y) is analytic in *D* if and only if -if(z) is analytic there.

Show that

(a)
$$\exp(2 \pm 3\pi i) = -e^2$$
; (b) $\exp\left(\frac{2+\pi i}{4}\right) = \sqrt{\frac{e}{2}}(1+i)$;
(c) $\exp(z+\pi i) = -\exp z$.

- 2. State why the function $f(z) = 2z^2 3 ze^z + e^{-z}$ is entire.
- Use the Cauchy–Riemann equations and the theorem in Sec. 21 to show that the function f(z) = exp z is not analytic anywhere.
- 4. Show in two ways that the function f(z) = exp(z²) is entire. What is its derivative? Ans. f'(z) = 2z exp(z²).
- 5. Write $|\exp(2z + i)|$ and $|\exp(iz^2)|$ in terms of x and y. Then show that

$$|\exp(2z+i) + \exp(iz^2)| \le e^{2x} + e^{-2xy}.$$

- **0.** Show that $|\exp(z^2)| \le \exp(|z|^2)$.
- 7. Prove that $|\exp(-2z)| < 1$ if and only if $\operatorname{Re} z > 0$.
- Find all values of z such that

(a)
$$e^z = -2;$$
 (b) $e^z = 1 + \sqrt{3}i;$ (c) $\exp(2z - 1) = 1.$

Ans. (a)
$$z = \ln 2 + (2n+1)\pi i$$
 $(n = 0, \pm 1, \pm 2, ...);$

(b)
$$z = \ln 2 + \left(2n + \frac{1}{3}\right)\pi i \ (n = 0, \pm 1, \pm 2, \ldots);$$

(c) $z = \frac{1}{2} + n\pi i \ (n = 0, \pm 1, \pm 2, \ldots).$

EXERCISES

1. Show that

(a) $\text{Log}(-ei) = 1 - \frac{\pi}{2}i;$ (b) $\text{Log}(1-i) = \frac{1}{2}\ln 2 - \frac{\pi}{4}i.$

- 2. Show that (a) $\log e = 1 + 2n\pi i$ $(n = 0, \pm 1, \pm 2, ...);$ (b) $\log i = \left(2n + \frac{1}{2}\right)\pi i$ $(n = 0, \pm 1, \pm 2, ...);$ (c) $\log(-1 + \sqrt{3}i) = \ln 2 + 2\left(n + \frac{1}{3}\right)\pi i$ $(n = 0, \pm 1, \pm 2, ...).$
- 3. Show that

(a) $\log(1+i)^2 = 2\log(1+i);$ (b) $\log(-1+i)^2 \neq 2\log(-1+i).$

- 7. Find all roots of the equation $\log z = i\pi/2$. Ans. z = i.
- 8. Suppose that the point z = x + iy lies in the horizontal strip $\alpha < y < \alpha + 2\pi$. Show that when the branch $\log z = \ln r + i\theta$ ($r > 0, \alpha < \theta < \alpha + 2\pi$) of the logarithmic function is used, $\log(e^z) = z$. [Compare with equation (4), Sec. 30.]
- 9. Show that
 - (a) the function f(z) = Log(z i) is analytic everywhere except on the portion $x \le 0$ of the line y = 1;
 - (b) the function

$$f(z) = \frac{\log(z+4)}{z^2+i}$$

1. Show that

(a)
$$(1+i)^i = \exp\left(-\frac{\pi}{4} + 2n\pi\right) \exp\left(i\frac{\ln 2}{2}\right)$$
 $(n = 0, \pm 1, \pm 2, \ldots);$
(b) $(-1)^{1/\pi} = e^{(2n+1)i}$ $(n = 0, \pm 1, \pm 2, \ldots).$

2. Find the principal value of

(a)
$$i^{i}$$
; (b) $\left[\frac{e}{2}(-1-\sqrt{3}i)\right]^{3\pi i}$; (c) $(1-i)^{4i}$.
Ans. (a) $\exp(-\pi/2)$; (b) $-\exp(2\pi^{2})$; (c) $e^{\pi}[\cos(2\ln 2) + i\sin(2\ln 2)]$.

1. Find all the values of

(a)
$$\tan^{-1}(2i)$$
; (b) $\tan^{-1}(1+i)$; (c) $\cosh^{-1}(-1)$; (d) $\tanh^{-1} 0$.
Ans. (a) $\left(n + \frac{1}{2}\right)\pi + \frac{i}{2}\ln 3$ $(n = 0, \pm 1, \pm 2, ...)$;
(d) $n\pi i$ $(n = 0, \pm 1, \pm 2, ...)$.

- **2.** Solve the equation $\sin z = 2$ for z by
 - (a) equating real parts and then imaginary parts in that equation;
 - (b) using expression (2), Sec. 36, for $\sin^{-1} z$.

Ans.
$$z = \left(2n + \frac{1}{2}\right)\pi \pm i\ln(2 + \sqrt{3})$$
 $(n = 0, \pm 1, \pm 2, \ldots).$

EXERCISES

1. Show that

(a)
$$(1+i)^i = \exp\left(-\frac{\pi}{4} + 2n\pi\right) \exp\left(i\frac{\ln 2}{2}\right)$$
 $(n = 0, \pm 1, \pm 2, \ldots);$
(b) $(-1)^{1/\pi} = e^{(2n+1)i}$ $(n = 0, \pm 1, \pm 2, \ldots).$

2. Find the principal value of

(a)
$$i^{i}$$
; (b) $\left[\frac{e}{2}(-1-\sqrt{3}i)\right]^{3\pi i}$; (c) $(1-i)^{4i}$.
Ans. (a) $\exp(-\pi/2)$; (b) $-\exp(2\pi^{2})$; (c) $e^{\pi}[\cos(2\ln 2) + i\sin(2\ln 2)]$.