Q1\Does a given differential equation have always a solutionover an interval?

Q2\Is it possible for a differential equation tohave more than one dependent variable?

Q3\ Show that every function of the form $y=1 e^{c x}{ }_{x}$ where c is a constant is a solution of the differential equation $x y^{\prime}+y-y \ln (x y)=0$ for all $x /=0$.

Q4\How to interpret the differential equation

$$
\frac{d y}{d t}=0.028 y-10
$$

Q5\Eliminate the constant a from the equation $(x-a)^{2}+y^{2}=a^{2}$

Q6\Eliminate α and 6 from the relation $x=b \cos (\omega t+\alpha)$, in which ω is a parameter (not to be eliminate).

Q7\Solve the following differential equations:

1) $y d x-x d y=x y d x$.
2) $(x+y)(d x-d y)=d x+d y$.
3) $x^{2}(1-y) d x+y^{2}(1+x) d y=0$.
4) $3 e^{x} \tan y d x+\left(1-e^{x}\right) \sec ^{2} y d y=0$.

Q8\ Suppose that $\stackrel{d v}{\underline{n}} \quad d x=g(\underset{x}{x})$, derive a formula for solving this type of differential equation.

Q9\ Solve the following differential equations:1) $x y d x$
$+\left(x^{2}+y^{2}\right) d y=0$.
2) $\left(x^{2}+x y+y^{2}\right) d x-x y d y=0$.
3) $y^{\prime}=\frac{x+y}{x-y}$.
4) $\frac{d y}{d x}=\frac{x e^{v / x}+y}{x}$.
5) $\left(2 x \sinh \left(\frac{y}{x}\right)+3 y \cosh \left(\frac{y}{x}\right)\right) d x-3 x \cosh \left(\frac{y}{x}\right) d y=0$.

Q10\Solve the following differential equations:1) ($y-$
2) $d x-(x-y-1) d y=0$.
2) $(x-4 y-9) d x+(4 x+y-2) d y=0$.
3) $(x+y-1) d x+(2 x+2 y+1) d y=0$.

Q11\Solve the following differential equations:

1) $(\cos x \cos y-\cot x) d x-\sin x \sin y d y=0$.
2) $2 x y d x+\left(x^{2}+1\right) d y=0$.
3) $\frac{d y}{d x}=-\frac{3 x^{2}+4 x y}{2 x^{2}+2 y}$.
4) $y^{\prime}=\left(x y^{2}-1\right) /\left(1-x^{2} y\right)$.

Q12\Give an example of a differential equation for which adegree is not defined.

Q13\Solve the following differential equations (Find the gen-eral solution of the following):

1) $y \frac{d x}{d y}+2 x=y^{3}$.
2) $x \frac{d y}{d x}+y=x$.
3) $y^{\prime}+\tan (x) y=\cos ^{2}(x)$, over the interval $-\frac{\pi}{2}<x<\frac{\pi}{2}$.
4) $3 x y^{\prime}-y=\ln (x)+1, x>0$ satisfying $y(1)=-2$.

Q 14\Solve the following differential equations:1)
$y\left(6 y^{2}-x-1\right) d x+2 x d y=0$.
2) $\frac{d y}{d x}+y=(x y)^{2}$.
3) $x y-\frac{d y}{d x}=y^{3} e^{-x^{3}}$.

Q15\Solve the following differential equations:

1) $\frac{d y}{d x}=-\frac{x^{2}+2 x y+y^{2}}{1+(x+y)^{2}}$.
2) $\frac{d y}{d x}-(3 x-2 y)^{3}=0$.
