Q1\ Does a given differential equation have always a solutionover an interval?

Q2 Is it possible for a differential equation tohave more than one dependent variable?

Q3 Show that every function of the form $y = \frac{1}{x} e^{cx}_{x}$ where c is a constant is a solution of the differential equation $xy'+y-y \ln(xy) = 0$ for all $x \neq 0$.

Q4 How to interpret the differential equation

$$\frac{dy}{dt} = 0.028y - 10.$$

Q5\Eliminate the constant a from the equation $(x-a)^2+y^2 = a^2$

Q6\ Eliminate α and β from the relation $x = \beta \cos(\omega t + \alpha)$, in which ω is a parameter (not to be eliminate).

Q7 Solve the following differential equations:

1) ydx - xdy = xydx. 2) (x + y)(dx - dy) = dx + dy. 3) $x^{2}(1 - y)dx + y^{2}(1 + x)dy = 0$. 4) $3e^{x} \tan ydx + (1 - e^{x}) \sec^{2} ydy = 0$.

Q8\ Suppose that $\frac{dy}{dx} = g(\frac{y}{x})$, derive a formula for solving this type of differential equation.

Q9 Solve the following differential equations:1) xydx

$$+ (x^{2} + y^{2})dy = 0.$$
2) $(x^{2} + xy + y^{2})dx - xydy = 0.$
3) $y' = \frac{x+y}{x-y}.$
4) $\frac{dy}{dx} = \frac{xe^{y/x}+y}{x}.$
5) $(2x\sinh(\frac{y}{x}) + 3y\cosh(\frac{y}{x}))dx - 3x\cosh(\frac{y}{x})dy = 0.$

Q10\Solve the following differential equations:1) (y -

$$2)dx - (x - y - 1)dy = 0.$$

2) $(x - 4y - 9)dx + (4x + y - 2)dy = 0.$

3) (x + y - 1)dx + (2x + 2y + 1)dy = 0.

Q11*Solve the following differential equations:*

1) $(\cos x \cos y - \cot x)dx - \sin x \sin ydy = 0.$

2) $2xydx + (x^2 + 1)dy = 0.$ 3) $\frac{dy}{dx} = -\frac{3x^2+4xy}{2x^2+2y}.$ 4) $y' = (xy^2 - 1)/(1 - x^2y).$ Q12\ Give an example of a differential equation for which adegree is not defined.

Q13 Solve the following differential equations (Find the gen-eral solution of the following):

1)
$$y \frac{dx}{dy} + 2x = y^{3}$$
.
2) $x \frac{dy}{dx} + y = x$.
3) $y' + \tan(x) y = \cos^{2}(x)$, over the interval $-\frac{\pi}{2} < x < \frac{\pi}{2}$.
4) $3xy' - y = \ln(x) + 1$, $x > 0$ satisfying $y(1) = -2$.

Q 14 Solve the following differential equations:1)

$$y(6y^{2} - x - 1)dx + 2xdy = 0$$

2) $\frac{dy}{dx} + y = (xy)^{2}$.
3) $xy - \frac{dy}{dx} = y^{3}e^{-x^{3}}$.

Q15 Solve the following differential equations:

1)
$$\frac{dy}{dx} = -\frac{x^2+2xy+y^2}{1+(x+y)^2}$$
.
2) $\frac{dy}{dx} - (3x - 2y)^3 = 0$