1. Suppose that 1.414 is used as an approximation to $\sqrt{2}$. Find the absolute error and relative errors.
2. If 0.333 is approximate value of $\frac{1}{3}$, find the absolute, relative and percentage errors.
3. Use the formula

$$
f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h}
$$

to approximate the derivative of $f(x)=3 x^{2}$ at $x=1$ using $h=0.1$. Compute both the absolute true error $\left|E_{t}\right|$, and absolute relative true error $\left|\epsilon_{a}\right|$.
4. Provide a general formula for determining both the absolute true error and absolute relative true error when approximating the derivative of $f(x)=x^{2}$ at $x=a$ using a value h in the expression

$$
f^{\prime}(x) \approx \frac{(a+h)^{2}-a^{2}}{h}
$$

5. Using $\left|\epsilon_{a}\right|$ from the previous exercise, what is the greatest value of h that can be used to approximate the derivative of $f(x)=x^{2}$ at $x=4$ with an error of no more than 1% ?
6. Starting with the intervals $[0.5,0.6]$, use 3 steps of the Bisection method to find a smaller interval containing a root of $f(x)=e^{x}-2 \cos (x)$. What will be the length of the final interval after 10 steps of the method?
7. Rearranging the equation $x^{3}=0.5$, gives the iterative formula $x_{n+1}=g\left(x_{n}\right)$, where $g(x)=\left(2 x^{2}\right)^{-1}$.
(a) Starting with $x_{0}=1$, compute the x_{n} up to $n=6$, and describe what is happening.
(b) Explain the behavior of (a) by evaluating $g^{\prime}(x)$ at $x=2^{-\frac{1}{3}}$.
(c) Repeat (a) and (b) for the two iterative schemes $x_{n+1}=\frac{x_{n}}{2}+\frac{1}{4 x_{n}^{2}}$ and $x_{n+1}=$ $\frac{2 x_{n}}{3}+\frac{1}{6 x_{n}^{2}}$. In particular: which of them gives faster convergence, and why? [Work to four decimal places.]
8. Apply the Regula-Falsi method for 3 steps starting with $x_{0}=0, x_{1}=1$ to find approximations to the root of $f(x)=\frac{1}{x+1}-\frac{3}{4}$.
9. If we are asked to find the root of $f(x)=x^{2}-1$ in $[0,2]$, give a function $g(x)$ for which the root is a fixed point.
10. State the criteria for the function $g(x)$ to have a fixed point in the interval $[a, b]$. Does the function $g(x)=\sqrt{x}$ have a fixed point in the interval $[0.5,2]$?
11. State the criteria for a function $g(x)$ used in a fixed point iteration method to converge on an interval $[a, b]$. Does the function $g(x)=\frac{1}{2} x+\frac{1}{x}$ meet these criteria on the interval [1,2]?
12. Solve $4 \cos (x)=2^{x}$ with an accuracy of 10^{-1}, by using Newton-Raphson method.
13. Find the positive root of $\cos (x)-x e^{x}=0$ for two steps, use false position method.
14. Use Secant method to write the iterative formula for finding $\sqrt{8}$.
15. For what values of x_{0} and x_{1} can the secant method be used to solve the following equation?

$$
f(x)=\frac{4 x-7}{x-2}=0
$$

11. Can Newton-Raphson method be used to solve $f(x)=0$ if $f(x)=\sqrt{x-3}$ and the starting value is $x_{0}=4$? Explain your answer.
12. Find the order of convergence for $x_{n+1}=\frac{1}{2} x_{n}\left(1+\frac{a}{x_{n}^{2}}\right)$ at \sqrt{a}.
13. Which of the following iteration forms
14. $x_{n+1}=x_{n}\left(3-3 c x_{n}+c^{2} x_{n}^{2}\right)$
15. $x_{n+1}=x_{n}\left(2-c x_{n}\right)$
should be used for finding an approximate value of - ? Explain your answer.
16. Find a, b and c so that the order of the iteration form $x_{n+1}=a x_{n}^{-2}+c d^{2} x_{n}^{-5}$ for $\sqrt[3]{d}$ becomes as high as possible.
17. Suppose a zero of $g(x)=x$ is approximated by bisection. How many iterations of the bisection method on $[-1,4]$ are sufficient to compute a solution to $g(x)=x$ to error less than 10^{-6} ?
18. Find the conditions on α to ensure that the iteration $x_{n+1}=x_{n}-\alpha f\left(x_{n}\right), n=$ $0,1, \cdots$ will converge linearly to the zero of f if started near the zero.
19. Starting with the interval $[1.1,1.2]$, use 3 steps of the bisection method to find a smaller interval containing a root of $f(x)=e^{x}-2-x$. Give the interval after the 3 steps, the estimate for the root, and the maximum error.
20. Newton-Raphson method converge to r of order two if $f(r)=0$ and $f^{\prime}(r) \neq 0$. What special properties must a function f have if Newton-Raphson method applied to f converges cubically to a zero of f ?
21. Show that the sequence $p_{n}=\frac{1}{n}$ converges linearly to $p=0$, and determine the number of the terms required to have $\left|p_{n}-p\right|<5 \times 10^{-2}$.
22. The cubic equation $x^{3}-2 x-5=0$ has one real root that is near to $x=2$. The equation can be rewritten in the following manner:
(i) $x=\frac{1}{2}\left(x^{3}-5\right)$
(ii) $x=\frac{5}{x^{2}-2}$
(iii) $x=\sqrt[3]{x^{2}+5}$.

Choose the form which satisfies the condition $\left|g^{\prime}(x)\right|<1$ and find the root correct to 3 dp .
21. The cubic equation $x^{3}-3 x-20=0$, has one real root that is near to $x_{0}=0.3$. The equation can be rewritten in the following manner:
(i) $x \frac{1}{3}\left(x^{3}-20\right)$
(ii) $x=\frac{20}{x^{2}-3}$
(iii) $x=\sqrt{3+\frac{20}{x}}$
(iv) $x=\sqrt[3]{3 x+20}$.

Choose the form which satisfies the condition $\left|g^{\prime}\left(x_{0}\right)\right|<1$ and find the root correct to 4 dp . Which of them gives rise to very rapid convergence?
22. Given the following variations of the equation, $x^{4}+x^{2}-80=0$,
(i) $x=\sqrt[4]{80-x^{2}}$
(ii) $x=\sqrt{80-x^{4}}$
(iii) $x=\sqrt{\frac{80}{1+x^{2}}}$.

Which of them gives rise to a convergent sequence? Find the real root of the equation correct to 4 dp . Take $x_{0}=3$.
23. To locate the root of $e^{-x}-\cos (x)=0$ that is near to 1.29 , using iteration, we could rewrite the equation as,
(i) $x=\cos ^{-1}\left(e^{-x}\right) \quad$ (ii) $x=-\log (\cos (x))=\log (\sec (x))$
(iii) $x=x-0.01\left(e^{-x}-\cos (x)\right)$.

Which of these three forms (if any) would yield a convergence iteration scheme?
Which would converge the fastest?
24. Starting with $x_{0}=6$, perform ten iterations using each of the recurrence relations:
(i) $x_{n+1}=\sqrt{5 x_{n}-4}$
(ii) $x_{n+1}=\frac{x_{n}-4}{2 x_{n}-5}$
which of (i) and (ii) has the higher rate of convergence?
25. Determine which of the following iterative functions, $g(x)$, can be used to locate the zeros of the equation $x^{3}+2 x-1=0$ on the interval $\left[\frac{1}{4}, \frac{1}{2}\right]$:
(i) $x=\frac{1}{2}\left(1-x^{3}\right)$
(ii) $\left.x=\frac{1-2 x}{(} x^{2}\right)$
(iiii) $x=\frac{x^{3}}{1-x}$
(iv) $x=\sqrt[3]{1-2 x}$
(v) $x=x-0.2\left(x^{3}+2 x-1\right)$
(vi) $x=\frac{x^{3}+2 x-1}{3 x^{3}+2}$.
26. Consider the polynomial, $p(x)=x^{5}-6 x^{4}+8 x^{3}+8 x^{2}+4 x-40$. Starting with initial approximation $x_{0}=x 3$, evaluate $\mathrm{p}(3)$ and $\mathrm{p}^{\prime}(3)$. Using Homer's method with Newton-Raphson method, compute the next two approximations correct to 2 dp .
27. Starting with $x_{0}=8$, perform 5 iterations using the following iterative formula: $x_{n+1}=0-\frac{20}{x_{n}}$. Use Aitken's iterative method with x_{3}, x_{4} and x_{5}, to improve the rate of convergence.
28. Use Aitken's iterative method to find the root of $e^{x}=5 x$ near to $x_{0}=0.3$. Compare the result method with iteration $x_{n+1}=\frac{1}{5} e^{x}$ starting with $x_{0}=0.3$.
29. Given $f(x)=x^{3}-c$, use Newton's method to establish the recurrence relation,

$$
x_{n+1}=\frac{1}{3}\left[2 x_{n}+\frac{c}{x_{n}^{2}}\right]
$$

for the cubic root of a number a. With $c=9$ and $x_{0}=3$, perform the iterations 6 times to find the cubic root of 9 .

