
CHAPTER 2

simultaneous Non-Linear Equations

2.1 Introduction

In this chapter, we consider the problem of finding roots of simultaneous nonlinear
equations. For the sake of simplicity, we shall consider only the case of two equations
in two unknowns. We take the equations in the forms:

f (x, y) = 0

g(x, y) = 0

}
. (2.1)

2.2 Numerical Methods

We shall study three numerical methods to solve system (2.1):

2.2.1 Fixed-Point Iteration

As a first step in applying fixed-point iteration, we rewrite these equations in the
following equivalent forms:

x = F(x, y)

y = G(x, y)

}
. (2.2)

so that any solution of (2.2) is a solution of (2.1), and conversely. Let (λ,µ) be a solution
of (2.1), i.e.

f (λ, µ) = 0

g(λ, µ) = 0

}
.

Let (x0,y0) be an approximation to (λ,µ). Generate successive approximations from the
recursion:

xi+1 = F(xi, yi)

yi+1 = G(xi, yi)

}
, i = 0, 1, 2, · · · . (2.3)

Stop iteration if |xi+1 − xi| < ϵ and |yi+1 − yi| < ϵ for any i.

Note 2.1. It is shown in the above analysis that this iteration will converge under the
following (but not necessary) conditions:

(a). F and G and their first partial derivatives be continuous in a neighborhood ℜ of
the roots (λ, µ), where ℜ consists of all (x, y) with |x − λ| ≤ ϵ, |y − µ| ≤ ϵ, for
some positive ϵ.
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(b). The following inequalities are satisfied:
|Fx|+ |Gx| ⩽ K∣∣Fy
∣∣+ ∣∣Gy

∣∣ ⩽ K

}
for all points (x, y) in ℜ and some K < 1.

(c). The initial approximations (x0, y0) is chosen in ℜ.

Note 2.2. When this iteration does converge it converges linearly.

To proof Note 2.1(b):
Let

x1 = F(x0, y0)

y1 = G(x0, y0)
and

λ = F(λ, µ)

µ = G(λ, µ)
.

Hence
λ − x1 = F(λ, µ)− F(x0, y0)

µ − y1 = G(λ, µ)− G(x0, y0).
By suing Taylor series expansion of F(λ, µ) and G(λ, µ) about x0 and y0, we get:

F(λ, µ) = F(x0, y0) + (λ − x0)(Fx)(x0,y0)
+ (µ − y0)

(
Fy
)
(x0,y0)

+ · · ·

G(λ, µ) = G(x0, y0) + (λ − x0)(Gx)(x0,y0)
+ (µ − y0)

(
Gy
)
(x0,y0)

+ · · · .

Let
K = max

{
|Fx|(x0,y0)

+ |Gx|(x0,y0)
,
∣∣Fy
∣∣
(x0,y0)

+
∣∣Gy
∣∣
(x0,y0)

}
.

∴ |λ − x1|+ |µ − y1| ⩽ |λ − x0|
{
|Fx|(x0,y0)

+ |Gx|(x0,y0)

}
+ |µ − y0|

{ ∣∣Fy
∣∣
(x0,y0)

+
∣∣Gy
∣∣
(x0,y0)

}
≤ K {|λ − x0|+ |µ − y0|} .

Similarly,

|λ − x2|+ |µ − y2| ⩽ K {|λ − x1|+ |µ − y1|}
≤ K2 {|λ − x0|+ |µ − y0|} .

Finally, we get:
|λ − xn|+ |µ − yn| ⩽ Kn {|λ − x0|+ |µ − y0|} .

The value of |λ − xn| and |µ − yn| must approach to zero and this happens, when
K < 1; Kn −→ 0 as n −→ ∞. Hence, the condition K < 1 is sufficient to force the
convergence.

2.2.2 Newton-Raphson Method

To adapt Newton-Raphson method to simultaneous equations, we proceed as
follows:
Let (x0, y0) be an approximation to the solution (λ,µ) of (2.1). Assuming that f and g
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are sufficiently differentiable, expand f (x, y), g(x, y) about (x0, y0) using Taylor series
for functions of two variables:

0 = f (x, y) = f (x0, y0) + fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0) + · · ·
0 = g(x, y) = g(x0, y0) + gx(x0, y0)(x − x0) + gy(x0, y0)(y − y0) + · · · .

Assuming that (x0,y0) sufficiently closed to (λ, µ) so that higher order terms can be
neglected, we, therefore, equate the expansion through linear terms to zero. This gives
us the system:

fx(x − x0) + fy(y − y0) ≈ − f (x0, y0)

gx(x − x0) + gy(y − y0) ≈ −g(x0, y0)

}
, (2.4)

where it is understood that all functions and derivatives in (2.4) are to be evaluated at
(x0, y0). We might then expect that the solution (x1, y1) of (2.4) will be closer to the
solution of (λ, µ) than (x0, y0). The solution of (2.4) by Cramer’s rule yields

x1 − xo =

∣∣∣∣∣ − f fy

−g gy

∣∣∣∣∣
(x0,y0)∣∣∣∣∣ fx fy

gx gy

∣∣∣∣∣
(x0,y0)

=

[− f gy + g fy

J( f , g)

]
(x0,y0)

,

y1 − yo =

∣∣∣∣∣ fx − f
gx −g

∣∣∣∣∣
(x0,y0)∣∣∣∣∣ fx fy

gx gy

∣∣∣∣∣
(x0,y0)

=

[
−g fx + f gx

J( f , g)

]
(x0,y0)

,

provided that J( f , g) = fxgy − gx fy ̸= 0 at (x0, y0). The function J( f , g) is called the
Jacobian of the functions f and g. The solution (x1, y1) of this system now provides
a new approximation to (λ, µ). Repetition of this process leads to Newton-Raphson
method for systems

xi+1 = xi −
[

f gy − g fy

J( f , g)

]
(xi,yi)

yi+1 = yi −
[

g fx − f gx

J( f , g)

]
(xi,yi)

 , for i = 0, 1, · · · .

where J( f , g) = fxgy − gx fy and where all functions involved are to be evaluated at
(xi, yi).
Also, the iteration formula can be written as follows:[

xi+1

yi+1

]
=

[
xi

yi

]
−
(

J( f , g)(xi,yi)

)−1
[

f (xi, yi)

g(xi, yi)

]
; i = 0, 1, 2, · · · .

Stop iteration if |xi+1 − xi| < ϵ and |yi+1 − yi| < ϵ for any i.
When this iteration converges, it converges quadratically.
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Note 2.3. A set of conditions sufficient to ensure convergence is the following:

i f , g and all their derivatives through second order are continuous and bounded
in a region ℜ containing (λ, µ).

ii The Jacobian J( f , g) does not vanish in ℜ.

iii The initial approximation (x0, y0) is chosen sufficiently close to the root (λ, µ).

Example 2.1. Solve the system

x2 + y2 = 1

x2 − y2 = −0.5,

at (x0, y0) = (0.5, 0.5).
Solution: Let

f (x, y) = x2 + y2 − 1 = 0

g(x, y) = x2 − y2 + 0.5 = 0.

∴ fx = 2x, fy = 2y, gx = 2x, gy = −2y. At (x0, y0) = (0.5, 0.5),
we see that

f (0.5, 0.5) = −0.5, fx(0.5, 0.5) = 1, fy(0.5, 0.5) = 1,

g(0.5, 0.5) = 0.5, gx(0.5, 0.5) = 1, gy(0.5, 0.5) = −1.

Hence

x1 = x0 −
[

f gy − g fy

J( f , g)

]
(x0,y0)

= 0.5 −
[
(−0.5 ×−1)− (0.5 × 1)

(1 ×−1)− (1 × 1)

]
= 0.5 +

0
2
= 0.5,

and

y1 = y0 −
[

g fx − f gx

J( f , g)

]
(x0,y0)

= 0.5 −
[
(0.5 × 1)− (−0.5 × 1)
(1 ×−1)− (1 × 1)

]
= 0.5 +

1
2
= 1.

Similarly, at (x1, y1) = (0.5, 1), we see that

f (0.5, 1) = 0.25, fx(0.5, 1) = 1, fy(0.5, 1) = 2,

g(0.5, 1) = −0.25, gx(0.5, 1) = 1, gy(0.5, 1) = −2.

Hence

x2 = x1 −
[

f gy − g fy

J( f , g)

]
(x1,y1)

= 0.5 −
[
(0.25 ×−2)− (−0.25 × 2

(1 ×−2)− (2 × 1)

]
= 0.5
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and

y2 = y1 −
[

g fx − f gx

J( f , g)

]
(x1,y1)

= 1 −
[
(−0.25 × 1)− (0.25 × 1)

(1 ×−2)− (2 × 1)

]
= 0.875.

For the other values, we obtain:

i xi yi f (xi, yi) g(xi, yi)

3 0.5 0.8660714 0.000079706 -0.000079713

4 0.5 0.8660254 0.000000007 0.000000007

5 0.5 0.866254 0.000000007 0.000000007

Example 2.2. Use two iterations of the Newton-Raphson method to approximate the
solution to

x2 + y2 = 5

y − x2 = −1.

Use x0 = y0 = 1.5 as an initial guess.
Solution: Let

f (x, y) = x2 + y2 − 5 and g(x, y) = −x2 + y + 1.

Thus:
fx = 2x, fy = 2y, gx = −2x, and gy = 1.

Hence, when x = y = 1.5, we find that:

fx(x0, y0) = 2(1.5) = 3, fy(x0, y0) = 2(1.5) = 3,

gx(x0, y0) = −2(1.5) = −3, gy(x0, y0) = 1.

Also

f (x0, y0) = (1.5)2 + (1.5)2 − 5 = −0.5,

g(x0, y0) = −(1.5)2 + 1.5 + 1 = 0.25,

( fxgy − fygx)(x0,y0) = (3)(1)− (3)(−3) = 12.

So, for the first iteration, we see that:

x1 = 1.5 − (−0.5)(1)− (0.25)(3)
12

≈ 1.604,

y1 = 1.5 − (0.25)(3)− (−0.5)(−3)
12

≈ 1.5625.

Now we find that iteration 2 produces:

fx(x1, y1) = 2(1.604) = 3.208, fy(x1, y1) = 2(1.5625) = 3.125,

gx(x1, y1) = −2(1.604) = −3.208, gy(x1, y1) = 1.
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Also,

f (x1, y1) = (1.604)2 + (1.5625)2 − 5 = 0.1422,

g(x1, y1) = −(1.604)2 + 1.5625 + 1 = −0.0103,

( fxgy − fygx)(x1,y1)
= (3.208)(1)− (3.125)(−3.208) = 13.233.

So for the second iteration we see that:

x2 = 1.604 − (0.1422)(1)− (−0.0103)(3.125)
13.233

≈ 1.591,

y2 = 1.5625 − (−0.0103)(3.208)− (0.1422)(−3.208)
13.233

≈ 1.5623.

2.2.3 Modified Newton-Raphson Method

Newton-Raphson method is not very easy in general for n simultaneous equations
in n unknowns. But in Modified Newton-Raphson method for (2.1), we use the idea of
Newton-Raphson method for single variable as follows:

xi+1 = xi −
[

f (x, y)
fx(x, y)

]
(xi,yi)

yi+1 = yi −
[

g(x, y)
gy(x, y)

]
(xi+1,yi)

 , for i = 0, 1, · · · . (2.5)

Stop iteration if |xi+1 − xi| < ϵ and |yi+1 − yi| < ϵ for any i. Also, for nonlinear
system:

f (x, y, z) = 0

g(x, y, z) = 0

h(x, y, z) = 0,

we have:

xi+1 = xi −
[

f (x, y, z)
fx(x, y, z)

]
(xi,yi,zi)

,

yi+1 = yi −
[

g(x, y, z)
gy(x, y, z)

]
(xi+1,yi,zi)

,

zi+1 = zi −
[

h(x, y, z)
hz(x, y, z)

]
(xi+1,yi+1,zi)

,

for i = 0, 1, · · · .
Stop iteration if |xi+1 − xi| < ϵ, |yi+1 − yi| < ϵ and |zi+1 − zi| < ϵ for any i.

Example 2.3. Solve nonlinear system

f (x, y) = ex + xy − 1 = 0

g(x, y) = sin(xy) + x + y − 1 = 0.
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By using modified Newton-Raphson method with x0 = 0.1, y0 = 0.5, carry out two
iterations only. It is easily verified that x = 0, y = 1 is a solution of the above system.

Solution: We compute the first partial derivatives

fx(x, y) = ex + y and gy(x, y) = x cos(xy) + 1.

Then, the iteration (2.5) becomes:

xi+1 = xi −
exi + xiyi − 1

exi + yi

yi+1 = yi −
sin(xi+1 yi) + xi+1 + yi − 1

xi+1 cos(xi+1 yi) + 1

 . (2.6)

We obtain from (??) for the next two approximations:

x1 = −0.02, y1 = 1.34,

and
x2 = 0.00009, y2 = 0.99979.

2.3 Exercises

1. Find an approximate solution of the following system, using Newton-Rahpson
method:

x2 y + y3 = 10

x y2 − x2 = 3,

with (x0 , y0) = (0.8 , 2.2) and ε = 10−2.

2. A solution of the system

x2 + y2 = 1

xy = 0

is x = 1, y = 0. Use Fixed-point method with x0 = 0.5, y0 = 0.1 to solve the
system, carry out three iterations only.

3. Find an approximate solution of the following system, using modified Newton-
Rahpson method:

x2 + xy3 = 9

3x2 y − y3 = 4,

with (x0 , y0) = (1.2 , 2.5) and ε = 10−1.
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Interpolation and Numerical Differentiation

3.1 Introduction

In this chapter, we discuss the problem of approximating a given function by
polynomials. There are two main uses of these approximating polynomials. The first
use is to reconstruct the function f (x) when it is not given explicitly and only values
of f (x) and/or its certain order derivatives are given at a set of distinct points called
nodes or tabular points. The second use is to perform the required operations which
were intended for f (x), like determination of roots, differentiation and integration,
etc. can be carried out using the approximating polynomial P(x). The approximating
polynomial P(x) can be used to predict the value of at a non-tabular point. The
deviation of P(x) from f (x), that is f (x)− P(x), is called the error of approximation.
And also various industrial, business and research organizations routinely collect and
analyze data. We shall investigate the collected data in the form of two variables which
we label x and y.

3.2 The finite difference calculus

Given a discrete function f (xk) = yk, k = 0, 1, · · · , n, that is, each argument xk

has a mate yk and suppose that the arguments (nodes) are equally spaced so that
xk+1 = xk + h, k = 0, 1, · · · , n − 1 where h is the subinterval widths. Then, we define
the following difference operators of the yk.

3.2.1 Shifting Operator (E)

This operator is defined as:
E f (x) = f (x + h), i.e. Ey0 = y1,
E2 f (x) = f (x + 2h), i.e. E2y0 = y2,
...
Ek f (x) = f (x + kh), i.e. Eky0 = yk.

In general,
Ekyi = yi+k for i = 0, 1, · · · and k = 1, 2, · · · .

3.2.2 Forward Difference Operator (∆)]

This operator is defined as follows:
∆ f (x0) = f (x0 + h)− f (x0) or ∆yk = yk+1 − yk where k = 0, 1, 2, · · · i.e. ∆y0 = y1 − y0

or ∆y0 = Ey0 − y0 = (E − 1)y0 which implies that ∆ = E − 1.
The difference ∆yk = yk+1 − yk is called first difference and the second difference is
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denoted by

∆2yk = ∆(∆yk) = ∆(yk+1 − yk) = ∆yk+1 − ∆yk = yk+2 − 2yk+1 + yk.

In general,

∆nyi =
n

∑
j=0

(−1)j

(
n
j

)
yi+n−j or ∆n f (x) =

n

∑
j=0

(−1)j

(
n
j

)
f (x + jh),

where (
n
j

)
=

n!
j!(n − j)!

.

Example 3.1. Prove the following concepts

(i) If f (x) = c, then ∆ f (x) = 0.

(ii) If f (x) = ax2 + bx + c, then ∆2 f (x) = 2ah2 and ∆3 f (x) = 0.

(iii) if p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0, then ∆n p(x) = n!anhn and ∆n+1p(x) =
0.

Solution:
(i) ∆ f (x) = f (x + h)− f (x) = c − c = 0.
(ii) ∆ f (x) = f (x + h)− f (x) = a(x + h)2 + b(x + h) + c − ax2 − bx − c

= 2axh + ah2 + bh.
∆2 f (x) = ∆ f (x + h)− ∆ f (x) = (2a(x + h)h + ah2 + bh)

−(2axh − ah2 − bh) = 2ah2.
∆3 f (x) = ∆(∆2 f (x)) = ∆2 f (x + h)− ∆2 f (x) = 2ah2 − 2ah2 = 0.

(iii) Left to the reader as an exercise.

Example 3.2. show that
∆(u(x)v(x)) = u(x)∆v(x) + v(x + h)∆u(x) Or ∆uivi = ui∆vi + vi+1∆ui.

Solution:

∆(u(x)v(x)) = u(x + h)v(x + h)− u(x)v(x)

= u(x + h)v(x + h)− u(x)v(x)− v(x + h)u(x) + v(x + h)u(x)

= v(x + h)[u(x + h)− u(x)] + u(x)[v(x + h)− v(x)]

= u(x)∆v(x) + v(x + h)∆u(x).

From the above, we can form the following forward difference table:
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i f (x) ∆ ∆2 ∆3 ∆4

...
...

x−2 y−2

∆y−2

x−1 y−1 ∆2y−2

∆y−1 ∆3y−2

x0 y0 ∆2y−1 ∆4y−2

∆y0 ∆3y−1

x1 y1 ∆2y0 ∆4y−1

∆y1 ∆3y0

x2 y2 ∆2y1

∆y2

x3 y3
...

...

Example 3.3. Construct the forward difference table for the following values:

(i) (0, 1), (1, 5), (2, 31), (3, 121) and (4, 341). (ii) (1, 0), (2, 5), (3, 22), (4, 57), (5,
116), (6, 205).
Solution:
(i)

x f (x) ∆ ∆2 ∆3 ∆4

0 1

4

1 5 22

26 42

2 31 64 24

90 66

3 121 130

220

4 341

(ii)

27



CHAPTER 5 The finite difference calculus

x f (x) ∆ ∆2 ∆3 ∆4

1 0

5

2 5 12

17 6

3 22 18 0

35 6

4 57 24 0

59 6

5 116 30

89

6 205

3.2.3 Backward Difference Operator (∇)]

This operator is defined as follows:
∇yi = yi − yi−1; i = 1, 2, · · ·
∇2yi = ∇(∇yi) = ∇(yi − yi−1) = ∇yi −∇yi−1

= (yi − yi−1)− (yi−1 − yi−2) = yi − 2yi−1 + yi−2.

In general, ∇nyi =
n
∑

j=0
(−1)j

(
n
j

)
yi−j, for any i and any natural number n. From

the above, we can form the following backward difference table:
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i f (x) ∇ ∇2 ∇3 ∇4

...
...

x−2 y−2

∇y−1

x−1 y−1 ∇2y0

∇y0 ∇3y1

x0 y0 ∇2y1 ∇4y2

∇y1 ∇3y2

x1 y1 ∇2y2 ∇4y3

∇y2 ∇3y3

x2 y2 ∇2y3

∇y3

x3 y3
...

...

Example 3.4. Show that ∇iy0 = ∆iy−1.
Solution: It is left to the reader as an exercise.

3.2.4 Divided Difference Operator

Given a discrete function f (xk) = yk, that is, each argument xk has a mate yk and
supposing that the arguments xk, k = 0, 1, · · · are equally or unequally spaced points.
Then we define the divided difference table f [., .] as follows:

f [xi] = f (xi),
f [xi, xi+1] =

f (xi+1)− f (xi)
xi+1−xi

,

f [xi, xi+1, xi+2] =
f [xi+1, xi+2]− f [xi, xi+1]

xi+2 − xi

=

f [xi+2]− f [xi+1]
xi+2−xi+1

− f (xi+1)− f (xi)
xi+1−xi

xi+2 − xi

=

yi+2−yi+1
xi+2−xi+1

− yi+1−yi
xi+1−xi

xi+2 − xi
.

In general,

f [xi, xi+1, · · · , xi+n−1, xi+n] =
f [xi+1, · · · , xi+n−1, xi+n]− f [xi, xi+1, · · · , xi+n−1]

xi+n − xi
.

29



CHAPTER 5 Interpolation

Note 3.1.

f [xi, xi+1] = f [xi+1, xi],

f [xi, xj, xk] = f [xj, xi, xk] = f [xj, xk, xi] · · · .

From the above, we can form the following divided difference table:

i f (x) f [., .] f [., ., .] f [., ., ., .] f [., ., ., ., .]

x0 y0

f [x0, x1]

x1 y1 f [x0, x1, x2]

f [x1, x2] f [x0, x1, x2, x3]

x2 y2 f [x1, x2, x3] f [x0, x1, x2, x3, x4]

f [x2, x3] f [x1, x2, x3, x4]

x3 y3 f [x2, x3, x4]

f [x3, x4]

x4 y4
...

...

3.3 Interpolation

Interpolation is a method used in numerical analysis to approximate functions or to estimate
the value of a function f (x) for arguments between x0, x1, · · · , xn at which the values y0, y1,
· · · , yn are known.

3.3.1 Interpolation Problem

Let x0, x1, · · · , xn be (n + 1) distinct points on the x-axis, and f (x) be a real-valued
function defined on [a, b] such that

a = x0 < x1 < · · · < xn = b. (3.1)

Suppose we know the values of f at these points. Let

yi = f (xi), i = 0, 1, · · · , n. (3.2)

We want to prove the existence and uniqueness of a polynomial pn(x) of degree≤ n
which interpolates (takes the same values as) f (x) at the given (n + 1) distinct points.
That is, it satisfies:

pn(xi) = yi = f (xi), i = 0, 1, · · · , n. (3.3)

This polynomial will be constructed and called the interpolation polynomial.
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Lagrange Interpolation Polynomial

Suppose that a polynomial

pn(x) = anxn + an−1xn−1 + · · ·+ a1x + a0, (3.4)

of degree n satisfies (3.3). Then, the condition that this polynomial must pass through
this (n + 1) points leads to (n + 1) equations for the (n + 1) unknown’s ai as follows:

f (x0) = anxn
0 + an−1xn−1

0 + · · ·+ a1x0 + a0

f (x1) = anxn
1 + an−1xn−1

1 + · · ·+ a1x1 + a0

...

f (xn) = anxn
n + an−1xn−1

n + · · ·+ a1xn + a0.

We find the values of ai’s by solving the above linear system of equations. Then, put
the value of ai’s in (3.4) and add the coefficients, we get:

pn(x) =
n

∑
k=0

Lk
n(x) f (xk), (3.5)

where,

Lk
n(x) =

(x − x0)(x − x1) · · · (x − xk−1)(x − xk+1) · · · (x − xn)

(xk − x0)(xk − x1) · · · (xk − xk−1)(xk − xk+1)...(xk − xn)

=
n

∏
i=0
i ̸=k

(
x − xi

xk − xi

)
, (3.6)

such that

Lk
n(xi) = δki =

{
0 if k ̸= i

1 if k = i.
(3.7)

The polynomials in (3.6) are called Lagrange polynomial and (3.5) is of degree≤ n and
is called Lagrange interpolation polynomial.
For n = 1:

p1(x) =
1

∑
k=0

Lk
1(x) f (xk) = L0

1(x) f (x0) + L1
1(x) f (x1),

where l0
1(x) = x−x1

x0−x1
and l1

1(x) = x−x0
x1−x0

.
For n = 2:

p2(x) =
2

∑
k=0

Lk
2(x) f (xk) = L0

2(x) f (x0) + L1
2(x) f (x1) + L2

2(x) f (x2),
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where

l0
2(x) =

(x − x1)(x − x2)

(x0 − x1)(x0 − x2)

l1
2(x) =

(x − x0)(x − x2)

(x1 − x0)(x1 − x2)

l2
2(x) =

(x − x0)(x − x1)

(x2 − x0)(x1 − x1)
.

And so on, ...
To explain the procedure for deriving Lagrange interpolation polynomial, we derive Lagrange
interpolation polynomial of degree one as follows:
Suppose we have two distinct points (x0, y0) and (x1, y1). Let P(x) = ax + b interpola-
tion polynomial interpolating f (x) at x0 and x1, i.e. P(xi) = f f f (xi) = yi, for i =0, 1.
Hence

y0 = f (x0) = P1(x0) = ax0 + b

y1 = f (x1) = P1(x1) = ax1 + b.

Solve the above two equations for a, we get a = y1−y0
x1−x0

. Substitute the value of a in the
first equation to find b, yields:

b = y0 − ax0 = y0 −
y1 − y0

x1 − x0
x0 =

y0x1 − y1x0

x1 − x0
.

Hence

P1(x) = ax + b =
y1 − y0

x1 − x0
x +

y0x1 − y1x0

x1 − x0

=
y1x − y0x + y0x1 − y1x0

x1 − x0
=

x1 − x
x1 − x0

y0 +
x − x0

x1 − x0
y1

=
x − x1

x0 − x1
y0 +

x − x0

x1 − x0
y1.

This is Lagrange interpolation polynomial of degree one.

The interpolation polynomial of a given set of data points is unique.
To prove the uniqueness of interpolation polynomial:
Suppose pn(x) and qn(x) are two polynomials of degree≤ n, interpolating f at the
(n + 1) distinct points given by (3.1), then pn(xi) = yi = qn(xi), i = 0, 1, 2, · · · , n. It
follows then that the polynomial dn(x) = pn(x)− qn(x) which is of degree≤ n has
(n+ 1) distinct roots (because dn(xi) = pn(xi)− qn(xi) = yi − yi = 0 for i = 0, 1, · · · , n).
This is impossible unless dn(x) vanishes identically, but if dn(x) vanishes identically,
then pn(x) = qn(x).

We have proved the existence and uniqueness of a polynomial pn(x), given by (3.5)
and (3.6) of degree≤ n which interpolates f (x) at (n + 1) distinct points (i.e. it satisfies
(3.3)).
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Example 3.5. Find the interpolating polynomial p2(x) which interpolating the function
f as:

x -1 0 2

y = f (x) 2 -1 5

Solution: From (3.5) and (3.6) we have

P2(x) =
2

∑
k=0

Lk
2(x) f (xk) = L0

2(x) f (x0) + L1
2(x1) f (x1) + L2

2(x) f (x2)

= 2L0
2(x)− L1

2(x1) + 5L2
2(x),

where

L0
2(x) =

(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
=

(x − 0)(x − 2)
(−1 − 0)(−1 − 2)

=
1
3
(x2 − 2x).

L1
2(x) =

(x − x0)(x − x2)

(x1 − x0)(x1 − x2)
=

(x + 1)(x − 2)
(0 + 1)(0 − 2)

= −1
2
(x2 − x − 2).

L2
2(x) =

(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
=

(x + 1)(x − 0)
(2 + 1)(2 − 0)

=
1
6
(x2 + x).

Hence, P2(x) = x2 − x − 1.
To estimate the value of f (x) at 0.5 i.e. f (0.5) from the above table, we put this value
in P2(x) we get

f (0.5) ≈ p2(x) = 2(0.5)2 − (0.5)− 1 = −0.5.

Error of the Polynomial Interpolation

Theorem 3.1. Let f ∈ Cn[a, b] such that f (n+1) exists in (a, b). If pn(x) is the interpo-
lating polynomial (3.5) of f at the (n + 1) distinct points a = x0 < x1 < · · · < xn = b,
then for any x in [a, b], there exists c ∈ (a, b) with

En(x) = f (x)− pn(x) =
1

(n + 1)!
f (n+1)(c) w(x), (3.8)

where w(x) = ∏n
i=0(x − xi).

Proof: If x = xi, then f (xi) = pn(xi), w(xi) = 0 and (3.8) holds. Fix x ∈ [a, b], x ̸= xi

for i = 0, 1, 2, · · · , n. Consider the function:

k(x) =
f (x)− pn(x)

w(x)
. (3.9)

And the real-values function g : [a, b] → R of the variable t

g(t) = f (t)− pn(t)− (t − x0)(t − x1)...(t − xn)k(x).
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We have g ∈ Cn[a, b] and g(n+1) exists in (a, b), and g has at least the (n + 2) distinct
roots x0, x1, · · · , xn, x. It follows then by successive applications of Generalized
Rolle’s Theorem on g and its derivatives that g(n+1) has at least one root, say c ∈ (a, b).
Therefore,

g(n+1)(c) = f (n+1)(c)− (n + 1)!k(x) = 0.

Hence

k(x) =
f (n+1)(c)
(n + 1)!

. (3.10)

The above equation, together with (3.9) implies (3.8)■.
Hint: Generalized Rolle’s Theorem said the (Suppose f ∈ C[a, b] and n times differen-
tiable on(a, b). If f (x) = 0 at the n + 1 distinct numbers a = x + 0 < x1 < · · · < xn =

b, then the numbers c in (x0, xn), and hence in (a, b) there exists f (n)(c) = 0 )

Note 3.2. The error in linear interpolation is given by:

E1(x) = f (x)−
[

x − b
a − b

f (a) +
x − a
b − a

f (b)
]
=

(x − a)(x − b)
2!

f ′′(c), (3.11)

where a < c < b.

To see how this error can be used, take the probability integral

φ(x) =
1√
2π

x∫
0

e−
t2
2 dt. (3.12)

In the below table, we have

x 1.2 1.3

φ(x) 0.3849 0.4032

If linear interpolation (3.5) is used to approximate φ(1.22), we get:

P1(1.22) =
1.22 − 1.3
1.2 − 1.3

(0.3849) +
1.22 − 1.2
1.3 − 1.2

(0.4032).

That is,
P1(1.22) = 0.3886.

Now, using (3.11), we have:

E1(1.22) = φ(1.22)− p1(1.22) =
(1.22 − 1.2)(1.22 − 1.3)

2
φ′′(c),

where 1.2 < c < 1.3.
Hence, |E1(1.22)| = 0.0008|φ′′(c)|.
But φ′(x) = 1√

2π
e−

x2
2 and φ′′(x) = −x 1√

2π
e−

x2
2 .

34



CHAPTER 5 Interpolation

Hence, |φ′′(x)| ⩽ 1√
2π
(1.2)e−

(1.2)2
2 ≈ 0.25.

Therefore, |E1(1.22)| ⩽ 0.0002.
That is, P1(1.22) = 0.3886, is correct to at least 3-decimal places. This is conformed
since φ(1.22) = 0.3888 as it is clear from the tables.

Of course in (3.11), c is unknown and in practice we should try to find an upper
bound for

∣∣∣ f (n+1)(x)
∣∣∣ in [a, b]. If for example f ∈ Cn+1[a, b], then we use:∣∣∣ f (n+1)(c)

∣∣∣ ⩽ M = max
a⩽ζ⩽b

∣∣∣ f (n+1)(ζ)
∣∣∣ . (3.13)

Example 3.6. Let f (x) = ln(1 + x), x0 = 1 and x1 = 1.1. Use linear interpolation to
calculate an approximate value of f (1.04) and obtain a bound on the truncation error.
Solution: We have f (x) = ln(1 + x), f (1) = ln(2) = 0.693147 and f (1.1) = ln(2.1) =
0.741937.
The Lagrange interpolating polynomial is obtained as:

P1(x) =
x − 1.1
1 − 1.1

(0.693147) +
x − 1

1.1 − 1
(0.741937,

which gives f (1.04) ≈ P1(1.04) = 0.712663.
The error in linear interpolation is given by:

E =
1
2!
(x − x0)(x − x1) f ′′(ξ), x0 < ξ < x1.

Hence, we obtain the bound on the error as:

|E| ⩽ 1
2

max
1⩽x⩽1.1

|(x − x0)(x − x1)| max
1⩽x⩽1.1

∣∣ f ′′(x)
∣∣ .

Since the maximum of (x − x0)(x − x1) is obtained at x = x0−x1
2 and f ′′(x) = − 1

(1+x)2 ,
we get:

|E| ≤ 1
2
(x1 − x0)

2

4
max

1⩽x⩽1.1

∣∣∣∣ 1
(1 + x)2

∣∣∣∣ ≤ (0.1)2

8
× 1

4
= 0.0003125.

Example 3.7. Determine an appropriate step size to use, in the construction of a table of
f (x) = (1 + x)6 on [0, 1]. The truncation error for linear interpolation is to be bounded
by 5 × 10−5.
Solution: The maximum error in linear interpolation is given by h2 M2

8 , where

M2 = max
0⩽x⩽1

∣∣ f ′′(x)
∣∣ = max

0⩽x⩽1

∣∣∣30(1 + x)4
∣∣∣ = 480.

We choose h so that h2 M2
8 = 60h2 ≤ 0.00005 which gives h ⩽ 0.00091.
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Divided Difference Interpolation Formula

The divided difference interpolation formula which interpolates f at x0, x1, · · · , xn can
be derived as follows::

f [x0, x] =
f [x]− f [x0]

(x − x0)
=⇒ f (x) = f [x] = f [x0] + (x − x0) f [x0, x].

f [x0, x1, x] = f [x1, x0, x] =
f [x0, x]− f [x1, x0]

(x − x1)
=⇒ f [x0, x] = f [x0, x1]+ (x− x1) f [x0, x1, x].

∴ f (x) = f [x0] + (x − x0) f [x0, x1] + (x − x0)(x − x1) f [x0, x1, x].

f [x0, x1, x2, x] = f [x2, x0, x1, x] =
f [x0, x1, x]− f [x2, x0, x1]

(x − x2)
=⇒

f [x0, x1, x] = f [x0, x1, x2] + (x − x2) f [x0, x1, x2, x].

Hence

f (x) = f [x0] + (x − x0) f [x0, x1] + (x − x0)(x − x1) f [x0, x1, x2]

+ (x − x0)(x − x1)(x − x2) f [x0, x1, x2, x],

and so on. Finally we get

Pn(x) = f [x0] + (x − x0) f [x0, x1] + (x − x0)(x − x1) f [x0, x1, x2] + · · ·
+ (x − x0)(x − x1) · · · (x − xn−1) f [x0, x1, · · · , xn]. (3.14)

Equation (3.14) is known as divided difference interpolation formula.

Theorem 3.2. Suppose that f ∈ Cn[a, b] and x0, x1, · · · , xn are distinct numbers in [a, b].
Then, a number ζ in (a, b) exists with:

f [x0, x1, · · · , xn] =
f (n)(ζ)

n!
.

Proof: Let g(x) = f (x)− Pn(x). Since f (xi)− Pn(xi) = 0 for each i = 0, 1, · · · , n,
g has n + 1 distinct zeros in [a, b]. The generalized Rolle’s theorem (Assume that
f ∈ [a, b] and that f ′, f ′′, · · · , f (n) exists over (a, b) and x0, x1, · · · , xn ∈ [a, b]. If
f (xj) = 0 for j = 0, 1, 2 , · · · , n there exists c ∈ (a, b) such that f (n)(xj).) implies that a
number ζ in (a, b) exists with g(n)(ζ) = 0, so:

f (n)(ζ)− p(n)n (ζ) = 0.

Since Pn(x) is a polynomial of degree n whose leading coefficient is f [x0, x1, · · · , xn],

P(n)
n (x) = f [x0, x1, ..., xn]n!.

As a consequence,

f [x0, x1, · · · , xn] =
f (n)(ζ)

n!
.■
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When x0, x1, · · · , xn are arranged consequently with equal spacing, equation (3.14)
can be expressed in a simplified form. Introducing the notation h = xi+1 − xi for
each i = 0, 1, · · · , n − 1 and x = x0 + sh, the difference x − xi can be written as
x − xi = (s − i)h; so equation (3.14) becomes

Pn(x) = Pn(x0 + sh) = f [x0] + sh f [x0, x1] + s(s − 1)h2 f [x0, x1, x2] + · · ·
+ s(s − 1) · · · (s − n + 1)hn f [x0, x1, · · · , xn]

= f (x0) +
n

∑
k=1

s(s − 1) · · · (s − k + 1)hk f [x0, x1, · · · , xk].

Using binomial-coefficient notation(
s
k

)
=

s(s − 1) · · · (s − k + 1)
k!

,

we can express Pn(x) compactly as:

Pn(x) = Pn(x0 + sh) = f [x0] +
n

∑
k=1

(
s
k

)
k!hk f [x0, x1, · · · , xk]. (3.15)

Example 3.8. Approximate f (1.1) using the following data and the divided difference
interpolation formula:

x 1 1.3 1.6 1.9 2.2

f (x) 0.751977 0.200860 0.4554022 0.2818186 0.1103623

Solution: The divided difference table corresponding to this data is given below:

x f (x) f [., .] f [., ., .] f [., ., ., .] f [., ., ., ., .]

1 0.751977

-0.4837057

1.3 0.200860 -0.1087339

-0.5489460 0.0658784

1.6 0.4554022 -0.0494433 0.0018251

,-0.5786120 0.068085

1.9 0.2818186 -0.0118183

-0.5715210

2.2 0.1103623
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From (3.15) for n = 4, we obtain

P4(x) = f (x0) +
4

∑
k=1

(
s
k

)
k!hk f [x0, x1, · · · , xk]

= f (x0) + sh f [x0, x1] + s(s − 1)h2 f [x0, x1, x2]

+ s(s − 1)(s − 2)h3 f [x0, x1, x2, x3]

+ s(s − 1)(s − 2)(s − 3)h4 f [x0, x1, x2, x3, x4].

If x = 1.1, this implies that h = 0.3 and s = 1
3 . Hence,

P4(x) = 0.7651997 +
1
3
(0.3)(−0.4837057) +

1
3
(−2

3
)(0.3)2(−0.1087339)

+
1
3
(−2

3
)(−5

3
)(0.3)3(0.0658784)

+
1
3
(−2

3
)(−5

3
)(−8

3
)(0.3)4(0.0018251) = 0.7196480.

3.4 Interpolation at Equally Spaced Points

3.4.1 Newton Forward Difference Interpolation Formula

We suppose the (n + 1) points x0, x1, · · · , xn to be equally spaced points, with

xi+1 − xi = h; i = 0, 1, · · · , n − 1. (3.16)

That is,
xi = x0 + ih; i = 0, 1, · · · , n. (3.17)

The Newton forward-difference interpolation formula, is constructed by making use
of the forward difference operator ∆. With this notation,

f [x0, x1] =
f (x1)− f (x0)

x1 − x0
=

1
h

∆ f (x0),

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1

x2 − x0
=

1
h ∆ f (x1)− 1

h ∆ f (x0)

2h

=
1

2h2 ∆2 f (x0),

and, in general,

f [x0, x1, . . . , xk] =
1

k!hk ∆k f (x0).

Since f [x0] = f (x0), Equation (3.15) has the following form:

Pn(x) = f (x0) +
n

∑
k=1

(
s
k

)
∆k f (x0)

= f (x0) + s∆ f (x0) +
s(s − 1)

2!
∆2 f (x0) + · · ·+ s(s − 1)(s − 2) · · · (s − n + 1)

n!
∆n f (x0),

(3.18)
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The corresponding error becomes

En(x) = f (x)− Pn(x) =
s(s − 1)(s − 2) · · · (s − n)

(n + 1)!
hn+1 f (n+1)(c), (3.19)

where a < c < b.
Also we can able to derive Newton forward difference interpolation formula as follows:

∆y0 = y1 − y0 ⇒ y1 = (1 + ∆)y0.

∆y1 = y2 − y1 ⇒ y2 = (1 + ∆)y1 = (1 + ∆)(1 + ∆)y0 = (1 + ∆)2y0.

In general,

ys = (1 + ∆)sy0

= f (x0) + s∆ f (x0) +
s(s − 1)

2!
∆2 f (x0) + · · ·+ s(s − 1)(s − 2) · · · (s − n + 1)

n!
∆n f (x0),

Notes 3.1.

i This formula is used for interpolation near the beginning of a difference table,
but it may also be applied in the other parts of the table by suitable shifting the
origin. Shifting the origin does not affect the result, but on the other hand it may
result in a simpler formula, which less prone to zero.

ii This formula is applicable for 0 ≤ s < 1. When working with differences, we can
select any values of x in the tabular points to be x0. This mostly done to keep s
within the range.

Example 3.9. Use Newton forward difference interpolation formula to interpolate the
value of f (1.75) fro the following data:

x 0.5 1 1.5 2 2.5

f (x) 0 1.376 2 2.625 4

Solution:
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x f (x) ∆ ∆2 ∆3 ∆4

0.5 0

1.375

1 1.375 -0.750

0.625 0.750

1.5 2 0 0

0.625 0.750

2 2.625 0.750

1.375

2.5 4

xs = 1.75, x0 = 0.5 and h = 0.5. s = xs−x0
h = 1.75−0.5

0.5 = 2.5.
As s(=2.5) does not lies between 0 and 1, we cannot use the origin to be x0 = 0.5. Let
us shift the origin to x0 = 1. Then, s = 1.75−1

0.5 = 1.5. We cannot use 1 as the origin
because still s > 1. Let as shift the origin to x0 = 1.5. s = 1.75−1.5

0.5 = 0.5. So we can use
x0 = 1.5 as the origin because the calculated value of s < 1. Hence y0 = 2, ∆y0 = 0.625
and ∆2y0 = 0.750 and

ys = y0 + s∆y0 +
s(s − 1)

2
∆2y0.

Inserting the values in the above formula, we get

f (1.75) = 2 + 0.5(0.625) +
0.5(0.5 − 1)

2
(0.750) = 2.219.

Example 3.10. From the following table

x 1 2 3 4 5 6

f (x) 0 5 22 57 116 205

find f (2.3) and f (3.5) by Newton forward difference interpolation formula.
Solution:
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x f (x) ∆ ∆2 ∆3 ∆4

1 0

5

2 5 12

17 6

3 22 18 0

35 6

4 57 24

59

5 116 30

89

6 205

For f(2.3), x0 = 2, h = 1, hence s = x−x0
h = 2.3−2

1 = 0.3, y0 = 5, ∆y0 = 17, ∆2y0 = 18,
∆3y0 = 6 and ∆4y0 = 0. Form (3.18) we have:

P3(x) = f (x0) + s∆ f (x0) +
s(s − 1)

2!
∆2 f (x0) +

s(s − 1)(s − 2)
3!

∆3 f (x0).

Hence,

f (2.3) ∼= P3(2.3) = 5 + (0.3)(17) +
0.3(0.3 − 1)

2!
18

+
0.3(0.3 − 1)(0.3 − 2)

3!
6 = 8.567.

For f (3.5), x0 = 3, h = 1, hence s = x−x0
h = 3.5−3

1 = 0.5, y0 = 22, ∆y0 = 35, ∆2y0 = 24,
∆3y0 = 6 and ∆4y0 = 0. Also, form (3.18) we have:

P3(x) = f (x0) + s∆ f (x0) +
s(s − 1)

2!
∆2 f (x0) +

s(s − 1)(s − 2)
3!

∆3 f (x0).

Hence,

f (3.5) ∼= P3(3.5) = 22 + (0.5)(35) +
(0.5)(0.5 − 1)

2!
24

+
(0.5)(0.5 − 1)(0.5 − 2)

3!
6 = 36.875.

If s = 0.3:
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|E3(x)| = | f (x)− P3(x)| =
∣∣∣∣ s(s − 1)(s − 2)(s − 3)

4!
h4 f (4)(c)

∣∣∣∣
=

|s(s − 1)(s − 2)(s − 3)|
4!

h4
∣∣∣ f (4)(c)∣∣∣

=
|0.3(0.3 − 1)(0.3 − 2)(0.3 − 3)|

24
M4 = 0.0402 M4,

where M4 = max
1<c<6

∣∣∣ f (4)(c)∣∣∣ .

To show that equation (3.18) is valid when s is rational number:
Let f is continuously differentiable function for any order, then

f (x0 + h) = f (x0) + h f ′(x0) +
h2

2!
f ′′(x0) + · · · =

=

{
1 + hd +

h2D2

2!
+ · · ·

}
f (x0) = ehd f (x0), (3.20)

where D = d
dx .

But
∆ f (x0) = f (x0 + h)− f (x0),

hence,
f (x0 + h) = f (x0) + ∆ f (x0) = (1 + ∆) f (x0). (3.21)

From (3.20) and (3.21), we get 1 + ∆ = ehd. Also,

f (x0 + sh) = f (x0) + sh f ′(x0) +
s2h2

2!
f ′′(x0) + · · ·

=

{
1 + shd +

s2h2D2

2!
+ · · ·

}
f (x0) = eshd f (x0)

=
(

ehd
)s

f (x0) = (1 + ∆)s f (x0). (3.22)

The formula (3.22) is the Newton forward difference interpolation formula converges
when |s| < 1.

3.4.2 Newton Backward Difference Interpolation Formula

If the interpolating nodes are reordered from last to first as xn, xn−1, . . . , x0, we can
write rewrite Equation (3.14) as follows:

Pn(x) = f [xn] + (x − xn) f [xn, xn−1] + (x − xn)(x − xn−1) f [xn, xn−1, xn−2] + · · ·
+ (x − xn)(x − xn−1) · · · (x − x1) f [xn, xn−1, · · · , x0].
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If, in addition, the nodes are equally spaced with x = xn + sh and x = xi + (s + n − i)h,
then

Pn(x) = Pn(xn + sh)

= f [xn] + sh f [xn, xn−1] + s(s + 1)h2 f [xn, xn−1, xn−2] + . . .

+ s(s + 1) . . . (s + n − 1)hn f [xn, xn−1, . . . , x0].

Since

f [xn, xn−1] =
1
h
∇ f (xn),

f [xn, xn−1, xn−2] =
1

2h2∇
2 f (xn),

and, in general,

f [xn, xn−1, . . . , xn−k] =
1

k!hk∇
k f (xn).

Consequently, we can obtain the following Newton backward difference interpolation
formula:

Pn(x) = f (xn) + s∇ f (xn) +
s(s + 1)

2!
∇2 f (xn) + . . .

+
s(s + 1) . . . (s + n − 1)

n!
∇n f (xn). (3.23)

The corresponding error:

En(x) = f (x)− Pn(x) =
s(s + 1)(s + 2)...(s + n)

(n + 1)!
hn+1 f (n+1)(c). (3.24)

where a < c < b. Also, Newton backward difference interpolation formula, can be
derived as follows:

∇y1 = y1 − y0 ⇒ (1 −∇)y1 = y0 ⇒ y1 = (1 −∇)−1y0.

∇y2 = y2 − y1 ⇒ y1 = (1 −∇)y2 ⇒ y2 = (1 −∇)−1y1

= (1 −∇)−1(1 −∇)−1y0 = (1 −∇)−2y0.

In general,

ys = (1 −∇)−sy0

= f (xn) + s∇ f (xn) +
s(s + 1)

2!
∇2 f (xn) + . . .

+
s(s + 1) . . . (s + n − 1)

n!
∇n f (xn).

Notes 3.2.
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i This formula is used toward the end of the difference table, but it may also be
applied in the other parts of the table by suitable shifting the origin.

ii This formula is applicable for 0 ≤ s < 1. When working with differences, we can
select any values of x in the tabular points to be xn. This mostly done to keep s
within the range.

Example 3.11. From Example 3.10, find f (2.5) and f (5.5) by using (3.23).
Solution: For f (2.5), xn = 3, h=1, hence s = x−xn

h = 2.5−3
1 = −0.5, yn = 22, ∇yn = 17

and ∇2yn = 12.
From (3.23), we have:

P2(x) = f (xn) + s∇ f (xn) +
s(s + 1)

2!
∇2 f (xn).

Hence
f (2.5) ∼= P2(2.5) = 22 + (−0.5)(17) +

(−0.5)(−0.5 + 1)
2

12 = 12.

Similarly, for f (5.5), xn = 6, s = −0.5, yn = 205, ∇yn = 89, ∇2yn = 30, ∇3yn = 6 and
∇4yn = 0.

P3(x) = yn + s∇yn +
s(s + 1)

2!
∇2yn +

s(s + 1)(s + 2)
3!

∇3yn

+
s(s + 1)(s + 2)(s + 3

4!
∇y

n

= 205 + (−0.5)89 +
−0.5(−0.5 + 1)

2!
30 +

−0.5(−0.5 + 1)(−0.5 + 2)
3!

6

+
−0.5(−0.5 + 1)(−0.5 + 2)(−0.5 + 2)

4!
0 = 156.375.

If s=-0.5:

|E2(x)| = | f (x)− P2(x)| =
∣∣∣∣ s(s + 1)(s + 2)

3!
h3 f (3)(c)

∣∣∣∣
=

|s(s + 1)(s + 2)|
4!

h3
∣∣∣ f (3)(c)∣∣∣

=
|−0.5(−0.5 + 1)(−0.5 + 2)|

6
M3 = 0.0625 M3,

where M3 = max
1<c<6

∣∣∣ f (3)(c)∣∣∣.
3.5 Numerical Differentiation

Numerical differentiation deals with the following problem: We are given the
function y = f (x) and wish to obtain one of its derivatives at the point x = xi. The
term ′′given′′ means that we either have an algorithm for computing the function or
possess a set of discrete data points (xi, yi), i = 0, 1, · · · , n. In either case, we have
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access to a finite number of (x, y) data pairs from which to compute the derivative.
If you suspect by now that numerical differentiation is related to interpolation, you
are right-one means of finding the derivative is to approximate the function locally
by a polynomial and then differentiate it. An equally effective tool is the Taylor series
expansion of f (x) about the point x = xi, which has the advantage of providing us
with information about the error involved in the approximation.

3.5.1 Differentiation of Continuous Functions

The derivative of a function at x is defined as:

f ′ (x) = lim
∆x→0

f (x + ∆x)− f (x)
∆x

.

To be able to find a derivative numerically, one could make ∆x finite to give:

f ′ (x) ≈ f (x + ∆x)− f (x)
∆x

.

Knowing the value of x at which you want to find the derivative of f (x), we choose
a value of ∆x to find the value of f ′ (x). To estimate the value of f ′ (x), three such
approximations are suggested as follows.

3.5.2 Forward Difference Approximation of the First Derivative

From differential calculus, we know that:

f ′ (x) = lim
∆x→0

f (x + ∆x)− f (x)
∆x

.

For a finite ∆x,

f ′ (x) ≈ f (x + ∆x)− f (x)
∆x

.

The above is the forward divided difference approximation of the first derivative. It is
called forward because you are taking a point ahead of x. To find the value of f ′ (x) at
x = xi, we may choose another point ∆x ahead as x = xi+1. This gives:

f ′ (xi) ≈
f (xi+1)− f (xi)

∆x
=

f (xi+1)− f (xi)

xi+1 − xi
, where ∆x = xi+1 − xi.
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Figure 3.1: Graphical representation of forward difference approximation of the

first derivative.

Example 3.12. The velocity of a rocket is given by:

ν (t) = 2000 ln

[
14 × 104

14 × 104 − 2100t

]
− 9.8t, 0 ⩽ t ⩽ 30,

where ν is given in m/s and t is given in seconds. At t = 16 s,
a) Use the forward difference approximation of the first derivative of ν (t) to calculate
the acceleration. Use a step size of ∆t = 2 s.
b) Find the exact value of the acceleration of the rocket.
c) Calculate the absolute relative true error for part (b).
Solution:
(a)

a (ti) ≈
ν (ti+1)− ν (ti)

∆t
, ti = 16, ∆t = 2, ti+1 = ti + ∆t = 16 + 2 = 18.

a (16) ≈ ν (18)− ν (16)
2

.

ν (18) = 2000 ln

[
14 × 104

14 × 104 − 2100 (18)

]
− 9.8 (18) = 453.02 m/s,

ν (16) = 2000 ln

[
14 × 104

14 × 104 − 2100 (16)

]
− 9.8 (16) = 392.07 m/s.

Hence,

a (16) ≈ ν (18)− ν (16)
2

=
453.02 − 392.07

2
= 30.474 m/s2.

(b) The exact value of a (16) can be calculated by differentiating

ν (t) = 2000 ln

[
14 × 104

14 × 104 − 2100t

]
− 9.8t,
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as
a (t) =

d
dt

[ν (t)] .

Knowing that:

d
dt

[ln (t)] =
1
t

and
d
dt

[
1
t

]
= − 1

t2 .

a (t) = 2000

(
14 × 104 − 2100t

14 × 104

)
d
dt

(
14 × 104

14 × 104 − 2100t

)
− 9.8

= 2000

(
14 × 104 − 2100t

14 × 104

)
(−1)

 14 × 104(
14 × 104 − 2100t

)2

 (−2100)− 9.8

=
−4040 − 29.4t
−200 + 3t

.

a (16) =
−4040 − 29.4 (16)
−200 + 3 (16)

= 29.674 m/s2.

(c) The absolute relative true error is

|∈t| =
∣∣∣∣True Value − Approximate Value

True Value

∣∣∣∣× 100

=

∣∣∣∣29.674 − 30.474
29.674

∣∣∣∣× 100 = 2.6967%.

3.5.3 Backward Difference Approximation for the First Derivative

We know
f ′ (x) = lim

∆x→0

f (x + ∆x)− f (x)
∆x

.

For a finite∆x,

f ′ (x) ≈ f (x + ∆x)− f (x)
∆x

.

If ∆x is chosen as a negative number,

f ′ (x) ≈ f (x + ∆x)− f (x)
∆x

=
f (x)− f (x − ∆x)

∆x
.

This is a backward difference approximation as you are taking a point backward from
. To find the value of f ′ (x) at x = xi, we may choose another point ∆x behind as
x = xi−1. This gives:

f ′ (xi) ≈
f (xi)− f (xi−1)

∆x
=

f (xi)− f (xi−1)

xi − xi−1
,

where ∆x = xi − xi−1.
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Figure 3.2: Graphical representation of backward difference approximation of

first derivative.

Example 3.13. The velocity of a rocket is given by:

ν (t) = 2000 ln

[
14 × 104

14 × 104 − 2100t

]
− 9.8t, 0 ⩽ t ⩽ 30.

(a) Use the backward difference approximation of the first derivative of ν (t) to calculate
the acceleration at t = 16s. Use a step size of ∆t = 2 s.
(b) Find the absolute relative true error for part (a).
Solution:

a (t) ≈ ν(ti)− ν(ti−1)

∆t
, ti = 16, ∆ = 2 ti−1 = ti − ∆t = 16 − 2 = 14.

a(16) ≈ ν(16)− ν(14)
2

,

ν(16) = 2000 ln
[

14 × 104

14 × 104 − 2100 × 16

]
− 9.8 × 16 = 392.07 m/s,

ν(14) = 2000 ln
[

14 × 104

14 × 104 − 2100 × 14

]
− 9.8 × 14 = 334.24 m/s,

a(16) ≈ ν(16)− ν(14)
2

=
392.07 − 334.24

2
= 28.915m/s2.

(b) The exact value of the acceleration at t = 16 s from Example 3.15 is:

a (16) = 29.674 m/s2.

The absolute relative true error for the answer in part (a) is:

|∈t| =
∣∣∣∣29.674 − 28.915

29.674

∣∣∣∣× 100 = 2.5584%

.
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3.5.4 Forward Difference Approximation from Taylor Series

Taylor’s theorem says that if you know the value of a function f (x) at a point xi

and all its derivatives at that point, provided, the derivatives are continuous between
xi and xi+1, then:

f (xi+1) = f (xi) + f ′ (xi) (xi+1 − xi) +
f ′′ (xi)

2!
(xi+1 − xi)

2 + . . . .

Substituting for convenience ∆x = xi+1 − xi, we get:

f (xi+1) = f (xi) + f ′ (xi)∆x +
f ′′ (xi)

2!
(∆x)2 + . . . ,

f ′ (xi) =
f (xi+1)− f (xi)

∆x
− f ′′ (xi)

2!
(∆x) + . . . ,

f ′ (xi) =
f (xi+1)− f (xi)

∆x
+ O (∆x) .

The O (∆x) term shows that the error in the approximation is of the order of ∆x.
Can you now derive from the Taylor series the formula for the backward divided

difference approximation of the first derivative?
As you can see, both forward and backward divided difference approximations

of the first derivative are accurate on the order of O (∆x). Can we get better approxi-
mations? Yes, another method to approximate the first derivative is called the central
difference approximation of the first derivative.
From the Taylor series

f (xi+1) = f (xi) + f ′ (xi)∆x +
f ′′ (xi)

2!
(∆x)2 +

f ′′′ (xi)

3!
(∆x)3 + · · · (3.25)

And

f (xi−1) = f (xi)− f ′ (xi)∆x +
f ′′ (xi)

2!
(∆x)2 − f ′′′ (xi)

3!
(∆x)3 + · · · . (3.26)

Subtracting Equation (3.29) from Equation (3.28), we get:

f (xi+1)− f (xi−1) = f ′ (xi) (2∆x) +
2 f ′′′ (xi)

3!
(∆x)3 + · · · .

Hence

f ′ (xi) =
f (xi+1)− f (xi−1)

2∆x
− f ′′′ (xi)

3!
(∆x)2 + · · ·

=
f (xi+1)− f (xi−1)

2∆x
+ O(∆x)2,

hence showing that we have obtained a more accurate formula as the error is of the
order of O(∆x)2.
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Figure 3.3: Graphical representation of central difference approximation of first

derivative.

Example 3.14. The velocity of a rocket is given by

ν (t) = 2000 ln

[
14 × 104

14 × 104 − 2100t

]
− 9.8t, 0 ⩽ t ⩽ 30.

(a) Use the central difference approximation of the first derivative of ν (t) to calculate
the acceleration at t = 16 s. Use a step size of ∆t = 2s.
(b) Find the absolute relative true error for part (a).
Solution:

a(ti) ≈
ν (ti+1)− ν (ti−1)

2∆t
, ti = 16, ∆t = 2, ti+1 = ti + ∆t = 16 + 2 = 18,

ti−1 = ti − ∆t = 16 − 2 = 14,

a (16) ≈ ν (18)− ν (14)
2 (2)

,

ν (18) = 2000 ln

[
14 × 104

14 × 104 − 2100 (18)

]
− 9.8 (18) = 453.02 m/s,

ν (14) = 2000 ln

[
14 × 104

14 × 104 − 2100 (14)

]
− 9.8 (14) = 334.24 m/s.

Hence,

a (16) ≈ ν (18)− ν (14)
4

=
453.02 − 334.24

4
= 29.694 m/s2.

(b) The exact value of the acceleration at t = 16s from Example 3.15 is

a (16) = 29.674 m/s2.
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The absolute relative true error for the answer in part (a) is

|∈t| =
∣∣∣∣29.674 − 29.694

29.674

∣∣∣∣× 100 = 0.069157%.

The results from the three difference approximations are given in Table (3.1).

Table (3.1) Summary of a(16) using different approximations.

Type of difference approximation a(16)m/s2 |∈t|%

Forward 30.475 2.6967

Backward 28.915 2.5584

Central 29.695 0.069157

Clearly, the central difference scheme is giving more accurate results because the
order of accuracy is proportional to the square of the step size. In real life, one would
not know the exact value of the derivative-so how would one know how accurately
they have found the value of the derivative? A simple way would be to start with a
step size and keep on halving the step size until the absolute relative approximate
error is within a pre-specified tolerance. Take the example of finding ν′ (t) for

ν (t) = 2000 ln

[
14 × 104

14 × 104 − 2100t

]
− 9.8t,

at t = 16 using the backward difference scheme. Given in Table (3.2) are the values
obtained using the backward difference approximation method and the corresponding
absolute relative approximate errors.

Table (3.2) First derivative approximations and relative errors for different ∆t

values of backward difference scheme.

∆t ν′(t) |∈a|%

2 28.915

1 29.289 1.2792

0.5 29.480 0.64787

0.25 29.577 0.32604

0.125 29.625 0.16355

From the above table, one can see that the absolute relative approximate error
decreases as the step size is reduced. At ∆t = 0.125, the absolute relative approximate
error is 0.16355%, meaning that at least 2 significant digits are correct in the answer.
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3.5.5 Finite Difference Approximation of Higher Derivatives

One can also use the Taylor series to approximate a higher order derivative. For
example, to approximate f ′′ (x), the Taylor series is

f (xi+2) = f (xi) + f ′ (xi) (2∆x) +
f ′′ (xi)

2!
(2∆x)2 +

f ′′′ (xi)

3!
(2∆x)3 + · · · , (3.27)

where xi+2 = xi + 2∆x, and

f (xi+1) = f (xi) + f ′ (xi) (∆x) +
f ′′ (xi)

2!
(∆x)2 +

f ′′′ (xi)

3!
(∆x)3 · · · , (3.28)

where xi−1 = xi − ∆x. Subtracting 2 times Equation (3.31) from Equation (3.30) gives

f (xi+2)− 2 f (xi+1) = − f (xi) + f ′′ (xi) (∆x)2 + f ′′′ (xi) (∆x)3 · · · ,

f ′′ (xi) =
f (xi+2)− 2 f (xi+1) + f (xi)

(∆x)2 − f ′′′ (xi) (∆x) + · · · ,

f ′′(xi) ≈
f (xi+2)− 2 f (xi+1)− f (xi)

(∆x)2 + O(∆x). (3.29)

Example 3.15. The velocity of a rocket is given by:

ν (t) = 2000 ln

[
14 × 104

14 × 104 − 2100t

]
− 9.8t, 0 ≤ t ≤ 30

Use the forward difference approximation of the second derivative of ν(t) to calculate
the jerk at t = 16s. Use a step size of ∆t = 2s.

Solution: let

j (ti) ≈
ν (ti+2)− 2ν (ti+1) + ν (ti)

(∆t)2 , ti = 16, ∆t = 2,

ti+1 = ti + ∆t = 16 + 2 = 18, ti+2 = ti + 2∆t = 16 + 2(2) = 20,

j (16) ≈ ν (20)− 2ν (18) + ν (16)

(2)2 ,

ν (20) = 2000 ln

[
14 × 104

14 × 104 − 2100 (20)

]
− 9.8 (20) = 517.35 m/s,

ν (18) = 2000 ln

[
14 × 104

14 × 104 − 2100 (18)

]
− 9.8 (18) = 453.02 m/s,

ν (16) = 2000 ln

[
14 × 104

14 × 104 − 2100 (16)

]
− 9.8 (16) .

Hence,

j (16) ≈ 517.35 − 2 (453.02) + 392.07
4

= 0.84515m/s3.
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The exact value of j (16) can be calculated by differentiating

ν (t) = 2000 ln

[
14 × 104

14 × 104 − 2100t

]
− 9.8t,

twice as:
a (t) =

d
dt

[ν (t)] and j (t) =
d
dt

[a (t)] .

Knowing that:

d
dt

[ln (t)] =
1
t

and
d
dt

[
1
t

]
= − 1

t2 ,

a (t) = 2000

(
14 × 104 − 2100t

14 × 104

)
d
dt

(
14 × 104

14 × 104 − 2100t

)
− 9.8

= 2000

(
14 × 104 − 2100t

14 × 104

)
(−1)

 14 × 104(
14 × 104 − 2100t

)2

 (−2100)− 9.8

=
−4040 − 29.4t
−200 + 3t

.

Similarly, it can be shown that:

j (t) =
d
dt

[a (t)] =
18000

(−200 + 3t)2 ,

j(16) =
18000

(−200 + 3(16))2 = 0.77909m/s3.

The absolute relative true error is:

|∈t| =
∣∣∣∣0.77909 − 0.84515

0.77909

∣∣∣∣× 100 = 8.4797%.

The formula given by Equation (??) is a forward difference approximation of the
second derivative and has an error of the order of O (∆x). Can we get a formula that
has a better accuracy? Yes, we can derive the central difference approximation of the
second derivative. The Taylor series is:

f (xi+1) = f (xi) + f ′ (xi)∆x +
f ′′ (xi)

2!
(∆x)2 +

f ′′′ (xi)

3!
(∆x)3

+
f ′′′′ (xi)

4!
(∆x)4 + · · · , (3.30)

where xi+1 = xi + ∆x, and

f (xi−1) = f (xi)− f ′ (xi)∆x +
f ′′ (xi)

2!
(∆x)2 − f ′′′ (xi)

3!
(∆x)3

+
f ′′′′ (xi)

4!
(∆x)4 − · · · , (3.31)
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where xi−1 = xi − ∆x. Adding Equations (3.33) and (3.34), gives

f (xi+1) + f (xi−1) = 2 f (xi) + f ′′ (xi) (∆x)2 + f ′′′ (xi)
(∆x)4

12
+ · · · ,

f ′′ (xi) =
f (xi+1)− 2 f (xi) + f (xi−1)

(∆x)2 − f ′′′′ (xi) (∆x)2

12
+ · · · ,

=
f (xi+1)− 2 f (xi) + f (xi−1)

(∆x)2 + O(∆x)2.

Example 3.16. The velocity of a rocket is given by:

ν (t) = 2000 ln

[
14 × 104

14 × 104 − 2100t

]
− 9.8t, 0 ≤ t ≤ 30,

Use the central difference approximation of the second derivative of ν (t) to calculate
the jerk at t = 16s. Use a step size of ∆t = 2s.
Solution: The second derivative of velocity with respect to time is called jerk. The
second order approximation of jerk then is:

j (ti) ≈
ν (ti+1)− 2ν (ti) + ν (ti−1)

(∆t)2 , ti = 16, ∆t = 2,

ti+1 = ti + ∆t = 16 + 2 = 18, ti−1 = ti − ∆t = 16 − 2 = 14,

j (16) ≈ ν (18)− 2ν (16) + ν (14)

(2)2 ,

ν (18) = 2000 ln

[
14 × 104

14 × 104 − 2100 (18)

]
− 9.8 (18) = 453.02 m/s,

ν (16) = 2000 ln

[
14 × 104

14 × 104 − 2100 (16)

]
− 9.8 (16) = 392.07 m/s,

ν (14) = 2000 ln

[
14 × 104

14 × 104 − 2100 (14)

]
− 9.8 (14) = 334.24 m/s,

Hence,

j (16) ≈ ν (18)− 2ν (16) + ν (14)

(2)2

=
453.02 − 2 (392.07) + 334.24

4
= 0.77969m/s3.

The absolute relative true error is:

|∈t| =
∣∣∣∣0.77908 − 0.77969

0.77908

∣∣∣∣× 100 = 0.077992%.

3.5.6 Differentiation of Discrete Functions

If we are given this set of distinct points (xi, yi), i = 0, 1, 2, · · · , n, determine
the interpolation polynomial passing through these points. We then differentiate this
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polynomial to obtain p(j)(x), j = 1, 2, · · · whose values for any given x are taken as
an approximation to f (j)(x). Construct a polynomial pn(x) which is best approximate
polynomial to f(x) by any methods given in interpolation.

Notes 3.3.

(1) For unequally space points, we must use Lagrange interpolation polynomial,
divided difference interpolation formula or spline function.

(2) For equally space points, we are able to use all available methods in interpolation.

(3) If we find pn(x) by Lagrange interpolation polynomial, divided difference interpo-
lation formula or spline function, differentiate pn(x) with respect to x directly.

(4) If we find pn(x) by NFDIF, NBDIF and Bessel’s interpolation formula, we differ-
entiate pn(x) with respect to x as follows:

d f (x)
dx

∼=
dpn(x)

dx
=

dpn(x)
ds

ds
dx

=
1
h

dpn(x)
ds

=
1
h

d
ds

{
y0 + s∆y0 +

s(s − 1)
2!

∆2y0 +
s(s − 1)(s − 2)

3!
∆3y0 + · · ·

}
=

1
h

{
∆y0 + (s − 1

2
)∆2y0 + (

s2

2
− s +

1
3
)∆3y0 + · · ·

}
.

d2 f (x)
dx2

∼=
d2pn(x)

dx2 =
d

dx

[
1
h

{
∆y0 + (s − 1

2
)∆2y0 + (

s2

2
− s +

1
3
)∆3y0 + · · ·

}]
=

d
ds

[
1
h

{
∆y0 + (s − 1

2
)∆2y0 + (

s2

2
− s +

1
3
)∆3y0 + · · ·

}]
ds
dx

=
1
h2

{
∆2y0 + (s − 1)∆3y0 + · · ·

}
.

In general,
dj f (x)

dxj
∼=

dj pn(x)
dxj =

1
hj

dj pn(x)
dsj , j = 1, 2, · · · .

Similarly, we obtain dj f (x)
dxj

∼= dj pn(x)
dxj for Newton backward difference interpolation and

Bessel’s interpolation formula.

Note 3.3. If x = xi (interpolation point), we get s = 0.

Example 3.17. Find an approximate value to f ′(0.7) where f (x) = sin(x) and x0 = 0.4,
x1 = 0.6, x2 = 0.8, x3 = 1.

Solution:

x 0.4 0.6 0.8 1

f (x) 0.389418 0.564642 0.717356 0.841471
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By using Lagrange interpolation polynomial,

x0 = 0.4, x1 = 0.6, x2 = 0.8, x3 = 1,

y0 = 0.389418, y1 = 0.564642, y2 = 0.717356, y2 = .0.841471.

P3(x) =
(x − x1)(x − x2)(x − x3)

(x0 − x1)(x0 − x2)(x0 − x3)
y0 +

(x − x0)(x − x2)(x − x3)

(x1 − x0)(x1 − x2)(x1 − x3)
y1

+
(x − x0)(x − x1)(x − x3)

(x2 − x0)(x2 − x1)(x1 − x3)
y2 +

(x − x0)(x − x1)(x − x2)

(x3 − x0)(x3 − x1)(x3 − x2)
y3

= −0.12683772x3 − 0.05307353x2 + 1.02559085x − 0.00420862.

Hence,
P′

3(x) = −0.38051316x2 − 0.10614706x + 1.02559085

and
f ′(0.7) ∼= p′3(0.7) = 0.7648346.

Exact value=cos(0.7)=0.76484219 and the error=0.00000573.

Example 3.18. Given the set of data as follows

x 4 2 0 3

y 63 11 7 28

Find f ′(x) at x = 1 by using divided difference interpolation formula.

Solution:

x f (x) f [, ] f [ , , ] f [ , , , ]

4 63
11−63

2−4 = 26

2 11 2−26
0−4 = 6

7−11
0−2 = 2 5−6

3−4 = 1

0 7 7−2
3−2 = 5

28−7
3−0 = 7

3 28

P(x) = 63 + 26(x − 4) + 6(x − 4)(x − 2) + 1(x − 4)(x − 2)(x − 0)

= x3 − 2x + 7.

Hence, P′(x) = 3x2 − 2. Thus, f ′(1) ∼= P′(1) = 3(1)2 − 2 = 1.
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Example 3.19. Find an approximate value to f ′(2.31)and f ′(1) by using Newton
forward difference interpolation formula where f (x) = x3 + 2 and x =0, 1, 2, 3, 4, 5.

Solution:

x f (x) ∆ ∆2 ∆3 ∆4

0 2

1

1 3 6

7 6

2 10 12 0

19 6

3 29 18 0

37 6

4 66 24

61
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If x = 2.31, and h = 1, then s = x−x0
h = 2.31−2

1 = 0.31, and

P3(x) = y0 + s∆y0 +
s(s − 1)

2!
∆2y0 +

s(s − 1)(s − 2)
3!

∆3y0.

Hence

P′
3(x) =

1
h

{
∆y0 +

(
s − 1

2

)
∆2y0 +

(
s2

2
− s +

1
3

)
∆3y0

}
,

and

f ′(2.31) ∼= P′
3(2.31) = 19 + (0.31 − 0.5)(18) + (

(0.31)2

2
− 0.31 +

1
3
)(6)

= 16.008.

To find the exact value of f ′(x) , differentiate f (x)directly with respect to x, we get
f ′(x) = 3x2.
Hence f ′(2.31) = 3(2.31)2 = 16.0083(exactvalue).
Error=exact value-approximate value=16.0083-16.008=0.0003.
If x = 1, and h = 1, then s = x−x0

h = 1−1
1 = 0. Hence,

P3(x) = y0 + s∆y0 +
s(s − 1)

2!
∆2y0 +

s(s − 1)(s − 2)
3!

∆3y0.
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Thus

P′
3(x) =

1
h

{
∆y0 + (s − 1

2
)∆2y0 + (

s2

2
− s +

1
3
)∆3y0

}
=

1
h

{
∆y0 −

1
2

∆2y0 +
1
3

∆3y0

}
.

and
f ′(1) ∼= P′

3(1) = 7 − 1
2
(12) +

1
3
(6) = 3.

Since f ′(x) = 3x2, implies that f ′(1) = 3(1)2 = 3(exactvalue)
Error=exact value-approximate value=3-3=0.

Theorem 3.3. Let f (x) is continuously differentiable (n + 1) times on [a, b], then,

f ′(xj)− P′
n(xj) =

f (n+1)(ξ)

(n + 1)! ∏
i=0
i ̸=j

(xj − xi), j = 0, 1, · · · , n.

Proof: From errors in interpolation, we have:

f (x)− Pn(x) =
f (n+1)(ξ)

(n + 1)!

n

∏
i=0

(x − xi).

Let g(x) = f (n+1)(ξ)
(n+1)! and w(x) =

n
∏
i=0

(x − xi). This implies that

f (x)− pn(x) = g(x)w(x).

Hence,

f ′(x)− P′
n(x) = g(x)w′(x) + g′(x)w(x)

f ′(xj)− P′
n(xj) = g(xj)w′(xj) + g′(xj)w(xj).

But w(xj) = 0, forj = 0, 1, 2,...,n. Therefore

f ′(xj)− p′n(xj) = g(xj)w′(xj).

We now that
w′(xj) = ∏

i=0
i ̸=j

(xj − xi).

Hence

f ′(xj)− P′
n(xj) =

f (n+1)(ξ)

(n + 1)! ∏
i=0
i ̸=j

(xj − xi).■

We can use forward difference for discrete functions as follows:
We know

f ′ (x) = lim
∆x→0

f (x + ∆x)− f (x)
∆x

.
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For a finite ∆x,

f ′ (x) ≈ f (x + ∆x)− f (x)
∆x

.

Figure 3.4: Graphical representation of forward difference approximation of

first derivative.

So given n + 1 data points (x0, y0) , (x1, y1) , (x2, y2) , . . . , (xn, yn), the value of f ′(x)
for xi ≤ x ≤ xi+1, i = 0, ..., n − 1, is given by:

f ′ (xi) ≈
f (xi+1)− f (xi)

xi+1 − xi
.

Example 3.20. The upward velocity of a rocket is given as a function of time in Table
(??).

Table (3.3) Velocity as a function of time.

t (s) 0 10 15 20 22.5 30

ν(t) (m/s) 0 227.04 362.78 517.35 602.97 901.67

By using forward divided difference, find the acceleration of the rocket at t = 16 s.
Solution: To find the acceleration at t = 16s., we need to choose the two values of
velocity closest to t = 16 s, that also bracket t = 16 s to evaluate it. The two points are
t = 15 s and t = 20 s

a(ti) ≈
ν(ti+1)− ν(ti)

∆t
, ti = 15, ti+1 = 20, ∆t = ti+1 − ti = 20 − 15 = 5,

a(16) ≈ ν(20)− ν(15)
5

=
517.35 − 362.78

5
= 30.914m/s2.
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3.6 EXERCISES

1. Show that

(a) ∆
(

u(x)
v(x)

)
= v(x)∆u(x)−u(x)∆v(x)

v(x+h)v(x) . (b)
n−1
∑

i=0
∆yi = yn − y0.

(c)
n−1
∑

i=0
ui∆vi = unvn − u0v0 −

n−1
∑

i=0
vi+1∆ui. (d) yk =

k
∑

i=0

 k

i

∆iy0.

(e) ∇ = δE− 1
2 = 1 − E−1 = 1 − (1 + D)−1. (f) ∆n f (x0) = hn f (n)(x0).

(g) ∆(αui + βvi) = α∆ui + β∆vi. (h) δ = E
1
2 − E− 1

2 .

(i) ∇ = 1 − E−1. (j) E∆ = ∆E

(k) E∇ = ∇E = ∆.

2. Given the following pairs of values of x and y

x 1 2 4 8 10

y 0 1 5 21 27

Determine the value y at x = 0.4, use Divided difference interpolation polynomial.

3. Use mathematical induction to prove that f [x0, x1, · · · , xn] =
∆n f (x0)

n!hn .

4. Show that: If a function g(x) interpolates the function f (x) at x1, x2, . . . , xn−1,
and h(x) interpolates the function f (x) at x2, x3, . . . , xn, then, T(x) = g(x) +
(x1−x)
(xn−x1)

[g(x)− h(x)]; Interpolate f (x) at x1, x2,. . ., xn−1, xn.

5. If the following values (a, s), (a + h, t), (a + 2h, u) and (a + 3h, v) are obtained from
polynomial of degree two. Prove that f (a + 1.5h) = (t+u)

2 + 1
24 [

3
2(t + u − s − v)] by

using Newton forward difference interpolation formula.

6. Use the definition of central difference operator to show that ∆nyk = δn
k+ n

2
.

7. Use the divided difference method to obtain a polynomial of least degree that fits
the following values:

x 1 0 3 -1 5

y 1 -1 8 3 1

8. From the following values:
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x 0 0.5 1 1.5 2

y -1 -2 1 2 3

Find f (0.6) by using Newton forward difference interpolation formula and Bessel
interpolation formula.

9. If we interpolate the function f (x) = ex−1 with a polynomial p of degree 12 using
13 nodes in [−1, 1], what is a good upper bound for | f (x)− p(x)| on [−1, 1]?

10. Compute a divided difference table for these function values: (3,1), (1,-3), (5,2)
and (6,4) and also find f (1.2) and f (5.5) by using divided difference interpolation
formula.

11. Suppose we know the values of cos(x) at x = −h, x = 0, x = h, (h > 0), write the
interpolation polynomial P(x) which interpolates cos(x) at these points. Prove the
error bound |En(x)| = |cos(x)− P(x)| ≤ 0.065h3,for all x ∈ [−h, h]. Determine h
such that the previous interpolation gives 4 exact decimals for any x ∈ [−h, h].

12. Determine the maximum step size that can be used in tabular of f (x) = ex in [0, 1],
so that the error in the linear interpolation will be less than 5 × 10−4. Find also the
step size if quadratic interpolation is used.

13. Find the unique polynomial of degree 2 or less such that P(1) = 1, P(3) = 27,
and P(4) = 64 by using each of the following methods: (i) Lagrange interpolating
formula and (ii) Divided difference interpolating formula.

14. Calculate the nth divided difference of f (x) = 1
x .

15. If f (x) = U(x)V(x), show that f [x0, x1] = U[x0]V[x0, x1] + U[x0, x1]V[x1].

16. Use the Lagrange interpolation polynomial and Divided difference interpolation
formula to estimate f (3) from the following values:

x 0 1 2 3 5 6

f (x) 1 14 15 5 6 19

17. Find dy
dx at x = 0.6 of the function y = f (x) where

x 0.4 0.5 0.6 0.7 0.8

f (x) 1. 5836494 1. 7974426 2 .0442376 2.3275054 2. 6510818
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18. Given the following pairs of values of x and y.

x 1 2 4 8 10

f (x) 0 1 5 21 27

Determine the first derivative at x = 0.4, use divided difference interpolation.

19. Find the first and second derivative at x = 0.6 for the following data: (0.4, 1.5836),
(0.5,1.7974), (0.6,2.0442), (0.7, 2.3275) and (0.8, 2.6511).

20. A rod is moving in a plane, the following table given the angle θ in radian through
which the rod has turned for various values of t seconds.

t 0 0.2 0.4 0.6 0.8 1 1.2

θ 0 0.12 0.49 1.12 2.02 3.2 4.67

Calculate the angular velocity=dθ
dt and angular accuracy=d2θ

dt2 of the rod, when
x = 0.6.
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Spline Approximations

4.1 Introduction

In practice, many of the constructed curves or surfaces have a sufficiently complex
shape which does not permit a universal analytic description at large with the help
of the elementary functions. For this reason, the objects are assembled out of the
relatively simple smooth fragments (segments for curves) and (patches for surfaces),
each being represented as a graph of the elementary function of one or two variables.

4.2 Interpolation by Spline Function

Definition 4.1. A function S is called a spline of degree k if:

(i) The domain of S is an interval [a, b].

(ii) S, S′, S′′, · · · , S(k−1) are all continuous functions on [a, b].

(iii) There are points xj (The notes of S), where a = x0 < x1 < · · · < xn = b and such
that S is a polynomial of degree at most k on each subinterval [xj, xj+1].

Definition 4.2. A spline function is a function consisting of polynomial pieces joined
together with certain smooth conditions. We are forced to write:

S(x) =


s0(x), x ∈ [x0, x1]

s1(x), x ∈ [x1, x2]
...
sn−1(x), x ∈ [xn−1, xn].

(4.1)

Note 4.1. The function S(x) that we wish to construct consists of (n − 1) polynomial
pieces. The interpolation conditions are S(xi) = yi, 1 ≤ i ≤ n. The continuity conditions
are imposed only at the interior knots x2, x3, . . ., xn−1, these conditions are written as

lim
x→x−i

S(j)(x) = lim
x→x+i

S(j)(x), i = 1, 2, . . . , n − 1; j = 0, 1, . . . , k − 1.

4.2.1 First Degree Spline

A first degree spline is a function whose pieces are linear polynomials joined
together to achieve continuity.
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The points t0, t1, t2, t3, t4, t5, t6 at which the function changes its character are termed
knots, in the theory of spline. Thus, the above spline function has seven knots.
For first degree spline, in equation (4.1)

Si(x) = aix + bi = mi(x − xi) + yi

where
mi =

yi+1 − yi

xi+1 − xi
for i = 0, 1, . . . , n − 1.

Example 4.1. Determine a spline function of degree one which interpolates the follow-
ing data:

x 0 1 3

f (x) 2 4 5

Solution: since

S(x) =

{
s0(x), x ∈ [0, 1]
s1(x), x ∈ [1, 3].

Hence

S0(x) =
y1 − y0

x1 − x0
(x − x0) + y0

=
4 − 2
1 − 0

(x − 0) + 2 = 2x + 2,

and

s1(x) =
y2 − y1

x2 − x1
(x − x1) + y1

=
5 − 4
3 − 1

(x − 1) + 4 =
1
2

x +
7
2

.
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Note 4.2. To find S(c), where c is any numbers:

(1) If c ∈ [xi, xi+1], then S(c) = si(c) for i = 0, 1, . . . , n − 1.

(2) If c /∈ [a = x0, b = xn], then

S(c) = s0(c) if c < a
S(c) = sn−1(c) if c ≥ b.

Example 4.2. Determine whether

S(x) =


x, x ∈ [−1, 0]
1 − x, x ∈ (0, 1)
2x − 2, x ∈ [1, 2]

is a first degree spline?
Solution: The function S(x) is not a spline of degree one because
lim

x→0+
S(x) = lim

x→0+
(1 − x) = 1, but lim

x→0−
S(x) = lim

x→0−
(x) = 0 and 1 ̸= 0.

4.2.2 Spline of Degree Two (Quadratic Spline)

A function S(x) in the equation (4.1) is a spline of degree two if S(x) is piecewise
quadratic polynomial such that S and S′ are continuous. si(x) must satisfy the interpo-
lation conditions si(xi) = yi and si(xi+1) = yi+1, i = 0, 1, . . . , n − 1.
We derive the equations for the interpolating quadratic spline S(x) as follows: Seek a
piecewise quadratic function S(x) in the equation (4.1) which is continuously differen-
tiable on [x0, xn] = [a, b] and interpolates the table that issi(xi) = yi, i = 0, 1, . . . , n.
Since S′(x) is continuous, we can put mi = s′i(xi) and mi+1 = s′i(xi+1). From Lagrange
interpolation of degree one, we get:

s′i(x) =
x − xi+1

xi − xi+1
mi +

x − xi

xi+1 − xi
mi+1. (4.2)

Integrating both sides of (4.2) with respect to x, we get

si(x) =
(x − xi+1)

2

2(xi − xi+1)
mi +

(x − xi)
2

2(xi+1 − xi)
mi+1 + c,

where c is the constant of integration. To find c, use the interpolation condition
si(xi) = yi, we obtain c = yi − (xi−xi+1)

2 mi. Substituting the value of c in the above
equation, we get:

si(x) =
mi+1 − mi

2(xi+1 − xi)
(x − xi)

2 + (x − xi)mi + yi, i = 0, 1, . . . , n − 1, (4.3)

where si(xi) = yi, s′i(xi) = mi and s′i(xi+1) = mi+1. These three conditions defined the
function si(x) uniquely on [xi, xi+1] as given in the equation (4.3) where

mi+1 = −mi + 2
(

yi+1 − yi

xi+1 − xi

)
, i = 0, 1, . . . , n − 1, (4.4)

where m0 is arbitrary.
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Note 4.3. To derive (4.4) from (4.3), put x = xi+1, we get (4.4) directly.

Example 4.3. Determine whether the following function is a quadratic spline.

(x) =


x2, −∞ < x ≤ 0
−x2, 0 ≤ x ≤ 1
1 − 2x, x < ∞.

Solution: Since lim
x→0−

S(x) = lim
x→0−

x2 = 0, and also lim
x→0+

S(x) = lim
x→0+

(−x2) = 0 , hence

S(x) is continuous at 0.
lim

x→1−
S(x) = lim(−

x→1−
x2) = −1 , and also lim

x→1+
S(x) = lim

x→1+
(1 − 2x) = −1, hence S(x) is

continuous at 1.
Therefore S(x) is continuous. From S(x) we find S′(x) by differentiating S(x) directly
with respect to x we get:

S′(x) =


2x, −∞ < x ≤ 0
−2x, 0 ≤ x ≤ 1
−2, 1 ≤ x < ∞.

Since lim
x→0−

S′(x) = lim
x→0−

2x = 0 and lim
x→0+

S(x) = lim
x→0+

(−2x) = 0,

hence S’(x) is continuous at 0.

Since lim
x→1−

S′(x) = lim
x→1−

(−2x) = −2 and lim
x→1+

S′(x) = lim
x→1+

(−2) = −2,

hence S′(x) is continuous at 1.
∴ S′(x) is continuous.
Hence, S(x) is a spline function of degree two.

Example 4.4. Find a quadratic spline interplant for these data:

x -1 0 0.5 1

f (x) 2 1 0 1

Solution: Let

S(x) =


s0(x), x ∈ [−1, 0]
s1(x), x ∈ [0, 0.5]
s2(x), x ∈ [0.5, 1],

,

where si(x) = mi+1−mi
2(xi+1−xi)

(x − xi)
2 + (x − xi)mi + yi for i =0, 1, 2.

To find m0, m1, m2 and m3, let m0 = 0. From equation (??)

m1 = −m0 + 2
(

y1 − y0

x1 − x0

)
= 2

(
1 − 2

0 − (−1)

)
= −2,
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m2 = −m1 + 2
(

y2 − y1

x2 − x1

)
= 2 + 2

(
0 − 1

0.5 − 0

)
= −2,

and
m3 = −m2 + 2

(
y3 − y2

x3 − x2

)
= 2 + 2

(
1 − 0

1 − 0.5

)
= 6.

Thus,

s0(x) =
m1 − m0

2(x1 − x0)
(x − x0)

2 + (x − x0)m0 + y0

=
−2 − 0

2(0 − (−1))
(x + 1)2 + 2 = −(x + 1)2 + 2

s1(x) =
m2 − m1

2(x2 − x1)
(x − x1)

2 + (x − x1)m1 + y1

=
−2 + 2

2(0.5 − 0)
x2 − 2x + 1 = −2x + 1.

s2(x) =
m3 − m2

2(x3 − x2)
(x − x2)

2 + (x − x2)m2 + y2

=
6 + 2

2(1 − 0.5)
(x − 0.5)2 − 2(x − 0.5) = 8(x − 0.5)2 − 2(x − 0.5).

Hence

S(x) =


−(x + 1)2 + 2, x ∈ [−1, 0]
−2x + 1, x ∈ [0, 0.5]
8(x − 0.5)2 − 2(x − 0.5), x ∈ [0.5, 1].

4.3 EXERCISES

1. Find the value of a and b such that

f (x) =

{
x2 − ax + 1, 1 ≤ x ≤ 2
3x − b, 2 ≤ x ≤ 3.

is a quadratic spline.

2. IS f (x) =

{
−x2 − 2x3, −1 ≤ x ≤ 0
x2 + 2x3, 0 ≤ x ≤ 1.

a cubic spline function?

3. Suppose S(x) =

{
1 + a1x + b1x2 + c1x3, 0 ≤ x ≤ 1
1 + a2(x − 1) + b2(x − 1)2 + c2(x − 1)3, 1 ≤ x ≤ 2,

is the natural cubic spline approximation of f that satisfies f (0) = 1, f (1) = 0 and
f (2) = 3. Find all constants a1, a2, b1, b2, c1 and c2.
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CHAPTER 5

Least Square and Curve Fitting

5.1 Introduction

The experimental data (x1, y1), (x2, y2), . . ., (xn, yn) are plotted on a rectangular
coordinate system. Such a curve is known as an approximating curve that the data
appears to be approximated by a straight line and it clearly exhibits a linear relationship
between the two variables. Curve fitting is the general problem of finding equations
of approximating curves which best fit the given set of data. The famous method,
proposed by Gauss and used to find the best fitted line, is called least squares methods.

5.2 Linear Least Square

We wish to predict response to n data points (x1, y1), (x2, y2), . . . , (xn, yn) by a
straight line given by:

y = a + bx,

where a and b are the constants of the least square straight lines. Let us use the least
squares criterion where we minimize:

Sr =
n

∑
i=1

Ei
2 =

n

∑
i=1

(yi − a − bxi)
2,

where Sr is called the sum of the square of the residuals. To find a and b, we minimize
Sr with respect to a and b.

∂Sr

∂a
= 2

n

∑
i=1

(yi − a − bxi) (−1) = 0,

∂Sr

∂b
= 2

n

∑
i=1

(yi − a − bxi) (−xi) = 0,

giving

−
n

∑
i=1

yi +
n

∑
i=1

a +
n

∑
i=1

bxi = 0.

−
n

∑
i=1

yixi +
n

∑
i=1

axi +
n

∑
i=1

bx2
i = 0.

Noting that

na + b
n

∑
i=1

xi =
n

∑
i=1

yi, (5.1)

68



CHAPTER 7 Linear Least Square

a
n

∑
i=1

xi + b
n

∑
i=1

x2
i =

n

∑
i=1

xiyi. (5.2)

Solving the above Equations (5.1) and (5.2) gives:

b =

n
n
∑

i=1
xiyi −

n
∑

i=1
xi

n
∑

i=1
yi

n
n
∑

i=1
x2

i −
(

n
∑

i=1
xi

)2 , (5.3)

a =

n
∑

i=1
x2

i

n
∑

i=1
yi −

n
∑

i=1
xi

n
∑

i=1
xiyi

n
n
∑

i=1
x2

i −
(

n
∑

i=1
xi

)2 . (5.4)

Also a can be rewritten as follows

a =


n
∑

i=1
yi

n

−b


n
∑

i=1
xi

n

 .

Figure 5.1: Linear lest square of y vs. x data showing residuals and square of

residual at a typical point, xi.

Example 5.1. Find a straight line y = a + b x for the following data by using least
square:

x 1 3 8 10 13

f (x) 80 100 110 120 140
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Solution:

x y x2 xy

1 80 1 80

3 100 9 300

8 110 64 880

10 120 100 1200

13 140 169 1820

35 550 343 4280

We are now ready to use the results of our calculations in the formula:

b =
5 × 4280 − 35 × 550

5 × 343 − 352 =
2150
490

≈ 4.388,

a =
550 − 4.388 × 35

5
=

396.42
5

≈ 79.284.

That means the equation of the least square line is y = 4.388x + 79.284.

Example 5.2. The torque T needed to turn the torsional spring of a mousetrap through
an angle, θ is given in Table (5.1),

Table (5.1) Torque versus angle for a torsion spring.

Angle, θ (Radians) Torque, T N. m

0.698132 0.188224

0.959931 0.209138

1.134464 0.230052

1.570796 0.250965

1.919862 0.313707

Find the constants k1 and k2 of the least square line T = k1 + k2θ.

Solution: Table (5.2) shows the summations needed for the calculation of the constants
of the regression model.
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Table (5.2) Tabulation of data for the calculation of the needed summations.

I θ T θ2 Tθ

1 Radians N. m , (Radians)2 N. m

2 0.698132 0.188224 4.87388 × 10−1 1.31405 × 10−1

3 0.959931 0.209138 9.21468 × 10−1 latex2.00758 × 10−1

4 1.134464 0.230052 1.2870 2.60986 × 10−1

5 1.570796 0.250965 2.4674 3.94215 × 10−1

6 1.919862 0.313707 3.6859 6.02274 × 10−1

5

∑
i=1

6.2831 1.1921 8.8491 1.5896

Since n = 5 :

k2 =

n
5
∑

i=1
θiTi −

5
∑

i=1
θi

5
∑

i=1
Ti

n
5
∑

i=1
θ2

i −
(

5
∑

i=1
θi

)2 =
5(1.5896)− (6.2831)(1.1921)

5(8.8491)− (6.2831)2

= 9.6091 × 10−2N - m/rad,

k1 =

5
∑

i=1
θ2

i

5
∑

i=1
Ti −

5
∑

i=1
θi

5
∑

i=1
θiTi

n
5
∑

i=1
θ2

i −
(

5
∑

i=1
θi

)2 =
(8.8491)(1.1921)− (6.2831)(1.5896)

5(8.8491)− (6.2831)2

= 1.1767 × 10−1N - m.

Example 5.3. Find the least square lines approximating this data :

x 1 2 3 4 5

f (x) 1.3 3.5 4.2 5 7

Solution:
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x y x2
i xiyi

1 1.3 1 1.3

2 3.5 4 7.0

3 4.2 9 12.6

4 5 16 20.0

5 7 25 35.0

15 21 55 79.9

Hence
b =

5(79.9)− (15)(21)

5(55)− (15)2 =
379.5 − 315
275 − 225

=
64.5
50

= 1.29

a =
(55)(21)− (75.9)(15)

5(55)− (15)2 =
1155 − 1138.5

275 − 225
=

16.5
50

= 0.33

Thus f (x) = 1.29x + 0.33 To find the error

5

∑
i=1

(yi − 1.29xi − 0.33)2 = (y1 − 1.29x1 − 0.33)2 + (y2 − 1.29x2 − 0.33)2

+ (y3 − 1.29x3 − 0.33)2 + (y4 − 1.29x4 − 0.33)2

+ (y5 − 1.29x5 − 0.33)2

= 0.1042 + 0.3481 + 0 + 0.2401 + 0.0484 = 0.6868.

Example 5.4. Fit a straight line to the following data:

x 1 2 3 4 6 8

y = f (x) 2.4 3 3.6 4 5 6

Solution: Let the straight line be y = a + bx.
The normal equations are

na + b
n

∑
i=1

xi =
n

∑
i=1

yi

a
n

∑
i=1

xi + b
n

∑
i=1

x2
i =

n

∑
i=1

xiyi.

Table for calculations:
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i x y x2 xy

1 1 2.4 1 2.4

2 2 3 4 6

3 3 3.6 9 10.8

4 4 4 16 16

5 6 5 36 30

6 8 6 64 48

sum 24 24 130 113.2

Since there are 6 pairs of values of x and y, hence here n = 6 and substitute the
above values in the above normal equations, we have

6a + 24b = 24

24a + 130b = 113.2.

Solving these equations, we get a = 1.976 and b = 0.5058.
Therefore, the required least square line is y = 1.976 + 0.5058x, which is the line of
best fit.

Example 5.5. By the method of least squares, find the straight line that best fits the
following data and hence find the value of y when x = 3.

x 1 2 3 4 5

y = f (x) 12 25 40 50 65

Solution: Let the straight line be y = a + bx.
The normal equations are

na + b
n

∑
i=1

xi =
n

∑
i=1

yi

a
n

∑
i=1

xi + b
n

∑
i=1

x2
i =

n

∑
i=1

xiyi.

Table for calculations:
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i x y x2 xy

1 1 12 1 12

2 2 25 4 50

3 3 40 9 120

4 4 50 16 200

5 5 65 25 325

sum 15 192 55 707

Since there are 5 pairs of values of x and y, hence here n = 5 and substitute the
above values in the above normal equations, we have

5a + 15b = 192

15a + 55b = 707.

Solving these equations, we get a = −0.8 and b = 13.1.
Therefore, the required least square line is y = −0.8 + 13.1x, which is the line of best
fit.
When x = 2 the value of y = −0.8 + 13.1(2) = 25.5.

Example 5.6. Fit a least square line to the following data:

x 4 6 8 10 12

y = f (x) 13.72 12.90 12.01 11.14 10.31

Solution: Let the straight line be y = a + bx.
The normal equations are

na + b
n

∑
i=1

xi =
n

∑
i=1

yi

a
n

∑
i=1

xi + b
n

∑
i=1

x2
i =

n

∑
i=1

xiyi.

Table for calculations:
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i x y x2 xy

1 4 13.72 16 54.88

2 6 12.90 36 77.40

3 8 12.01 64 96.08

4 10 11.14 100 111.40

5 12 10.31 144 123.72

sum 40 60.08 360 463.48

Since there are 5 pairs of values of x and y, hence here n = 5 and substitute the
above values in the above normal equations, we have

5a + 40b = 60.08

40a + 360b = 463.48.

Solving these equations, we get a = 5.5171 and b = 0.6744.
Therefore, the required least square line is y = 5.5171 + 0.6744x, which is the line of
best fit.

Example 5.7. Fit a least square line to the following data:

x 1 2 3 4 5

y = f (x) 14 27 40 55 68

Solution: Let the straight line be y = a + bx.
The normal equations are

na + b
n

∑
i=1

xi =
n

∑
i=1

yi

a
n

∑
i=1

xi + b
n

∑
i=1

x2
i =

n

∑
i=1

xiyi.

Table for calculations:

75



CHAPTER 7 Linear Least Square

i x y x2 xy

1 1 14 1 14

2 2 27 4 54

3 3 40 9 120

4 4 55 16 220

5 5 68 25 340

sum 15 204 55 748

Since there are 5 pairs of values of x and y, hence here n = 5 and substitute the
above values in the above normal equations, we have

5a + 15b = 204

15a + 55b = 748.

Solving these equations, we get a = 0 and b = 13.6.
Therefore, the required least square line is y = 13.6x, which is the line of best fit.

Example 5.8. Fit a straight line y = a + bx from the following data:

x 0 1 2 3 4

y = f (x) 1 1.8 3.3 4.5 6.3

Solution: The straight line is y = a + bx.
The normal equations are

na + b
n

∑
i=1

xi =
n

∑
i=1

yi

a
n

∑
i=1

xi + b
n

∑
i=1

x2
i =

n

∑
i=1

xiyi.

Table for calculations:

i x y x2 xy

1 0 1 0 0

2 1 1.8 1 1.8

3 2 3.3 4 6.6

4 3 4.5 9 13.5

5 4 6.3 16 25.2

sum 10 16.9 30 47.1
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Since there are 5 pairs of values of x and y, hence here n = 5 and substitute the
above values in the above normal equations, we have

5a + 10b = 16.9

10a + 30b = 47.1.

Solving these equations, we get a = 0.72 and b = 1.33.
Therefore, the required least square line is y = 0.72 + 1.33x, which is the line of best fit.

5.3 Transforming the data to use linear least square formulas

Examination of the nonlinear models above shows that in general iterative methods
are required to estimate the values of the model parameters. It is sometimes useful
to use simple linear least square formulas to estimate the parameters of a nonlinear
model. This involves first transforming the given data such as to regress it to a linear
model. Following the transformation of the data, the evaluation of model parameters
lends itself to a direct solution approach using the least squares method. Data for
nonlinear models such as exponential, power, and growth can be transformed.

5.3.1 Exponential Model

Many physical and chemical processes are governed by the exponential function:

y = aebx. (5.5)

Taking natural ln of both sides of Equation (5.5) gives:

ln(y) = ln(a) + bx.

Let z = ln(y), A = ln(a) and B = b implying a = eA, b = B then z = A + Bx.
The data z versus x is now a linear model. These equations simplify to what is known
as the normal equations (see Section 5.2):

nA + B
n

∑
i=1

xi =
n

∑
i=1

zi

A
n

∑
i=1

xi + B
n

∑
i=1

x2
i =

n

∑
i=1

xizi.

The solution to this system of equations is

B =

n
n
∑

i=1
xizi −

n
∑

i=1
xi

n
∑

i=1
zi

n
n
∑

i=1
x2

i −
(

n
∑

i=1
xi

)2 ,

A =

n
∑

i=1
x2

i

n
∑

i=1
zi −

n
∑

i=1
xi

n
∑

i=1
xizi

n
n
∑

i=1
x2

i −
(

n
∑

i=1
xi

)2 .
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Now since A and B are found, the original constants with the model are found as:

A = ln(a) =⇒ a = eA and b = B.

Example 5.9. Fit an exponential curve y = aebx to the following data by the method of
least squares:

x 2 3 4 5 6

y = f (x) 144 172.8 207.4 248.8 298.6

Solution: Let the given equation be y = aebx. Repeat the procedure in subsection 5.3.1,
we get z = A + Bx where A = ln(a), B = b and z = ln(y).
The normal equations are given by

nA + B
n

∑
i=1

xi =
n

∑
i=1

zi

A
n

∑
i=1

xi + B
n

∑
i=1

x2
i =

n

∑
i=1

xizi.

Table for calculations:

i x y z = ln(y) x2 xz

1 2 144 4.97 4 9.94

2 3 172.8 5.15 9 15.45

3 4 207.4 5.33 16 21.32

4 5 248.8 5.52 25 27.60

5 6 298.6 5,69 36 34.14

sum 20 26.66 90 108.45

Here n = 5 and substitute the above values in the above normal equations, we have

5A + 20B = 26.66

20A + 90B = 108.45.

Solving these equations, we get A = 4.608 and B = 0.181.
Since A = ln(a) = 4.608 =⇒ a = eA = e4.608 = 100.28 and b = B = 0.181.
Hence, the required equation for the given data is

y = 100.28e0.181x.
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Example 5.10. Find an exponential curve y = aebx to the following data by the method
of least squares:

x 0 2 4

y = f (x) 5.012 10 31.62

Solution: Let the given equation be y = aebx. Repeat the procedure in subsection 5.3.1,
we get z = A + Bx where A = ln(a), B = b and z = ln(y).
The normal equations are given by

nA + B
n

∑
i=1

xi =
n

∑
i=1

zi

A
n

∑
i=1

xi + B
n

∑
i=1

x2
i =

n

∑
i=1

xizi.

Table for calculations:

i x y z = ln(y) x2 xz

1 0 5.012 1.6118 0 0

2 2 10.00 2.3026 4 4.6052

3 4 31.62 3.4538 16 13.8152

sum 6 7.3682 20 18.4204

Here n = 3 and substitute the above values in the above normal equations, we have

3A + 6B = 7.3682

6A + 20B = 18.420.

Solving these equations, we get A = 1.5352 and B = 0.4604.
Since A = ln(a) = 1.5352 =⇒ a = eA = e1.5352 = 4.6423 and b = B = 0.4604.
Hence, the required equation for the given data is

y = 4.6423e0.4604x.

5.3.2 Exponential Curve

An exponential curve with base b is defined by

y = abx. (5.6)

where a ̸= 0, b > 0, b ̸= 1, and x is any real number. The base, b, is constant and the
exponent, x, is a variable.
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Many physical and chemical processes are governed by the exponential function:
Taking natural ln of both sides of Equation (5.6) gives:

ln(y) = ln(a) + xln(b).

Let z = ln(y), A = ln(a) and B = ln(b) implying a = eA, b = eB then z = A + Bx.
The data z versus x is now a linear model. These equations simplify to what is known
as the normal equations (see Section 5.2):

nA + B
n

∑
i=1

xi =
n

∑
i=1

zi

A
n

∑
i=1

xi + B
n

∑
i=1

x2
i =

n

∑
i=1

xizi.

The solution to this system of equations is

B =

n
n
∑

i=1
xizi −

n
∑

i=1
xi

n
∑

i=1
zi

n
n
∑

i=1
x2

i −
(

n
∑

i=1
xi

)2 ,

A =

n
∑

i=1
x2

i

n
∑

i=1
zi −

n
∑

i=1
xi

n
∑

i=1
xizi

n
n
∑

i=1
x2

i −
(

n
∑

i=1
xi

)2 .

Now since A and B are found, the original constants with the model are found as:

A = ln(a) =⇒ a = eA

and
B = ln(b) =⇒ b = eB

Example 5.11. Fit an equation of the form y = abx to the following data:

x 2 3 4 5 6

y = f (x) 144 172.8 207.4 248.8 298.6

Solution: Let the given equation be y = abx. Repeat the procedure in subsection 5.3.2,
we get z = A + Bx where A = ln(a), B = ln(b) and z = ln(y).
The normal equations are given by

nA + B
n

∑
i=1

xi =
n

∑
i=1

zi

A
n

∑
i=1

xi + B
n

∑
i=1

x2
i =

n

∑
i=1

xizi.
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Table for calculations:

i x y z = ln(y) x2 xz

1 2 144 4.97 4 9.94

2 3 172.8 5.15 9 15.45

3 4 207.4 5.33 16 21.32

4 5 248.8 5.52 25 27.60

5 6 298.6 5,69 36 34.14

sum 20 26.66 90 108.45

Here n = 5 and substitute the above values in the above normal equations, we have

5A + 20B = 26.66

20A + 90B = 108.45.

Solving these equations, we get A = 4.608 and B = 0.181.
Since A = ln(a) = 4.608 =⇒ a = eA = e4.608 = 100.28 and b = eB = e0.181 = 1.1984.
Hence, the required equation for the given data is

y = 100.28(1.1984)x.

Example 5.12. Find an exponential curve y = abx to the following data by the method
of least squares:

x 0 2 4

y = f (x) 5.012 10 31.62

Solution: Let the given equation be y = abx. Repeat the procedure in subsection
eqec7.1, we get z = A + Bx where A = ln(a), B = ln(b) and z = ln(y).
The normal equations are given by

nA + B
n

∑
i=1

xi =
n

∑
i=1

zi

A
n

∑
i=1

xi + B
n

∑
i=1

x2
i =

n

∑
i=1

xizi.

Table for calculations:
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i x y z = ln(y) x2 xz

1 0 5.012 1.6118 0 0

2 2 10.00 2.3026 4 4.6052

3 4 31.62 3.4538 16 13.8152

sum 6 7.3682 20 18.4204

Here n = 3 and substitute the above values in the above normal equations, we have

3A + 6B = 7.3682

6A + 20B = 18.420.

Solving these equations, we get A = 1.5352 and B = 0.4604.
Since A = ln(a) = 1.5352 =⇒ a = eA = e1.5352 = 4.6423 and b = eB = e0.4604 =

1.5847.
Hence, the required equation for the given data is

y = 4.6423(1.5847)x.

5.3.3 Logarithmic Functions

The form for the log models is:

y = β0 + β1 ln (x) .

This is a linear function between y and ln(x), the usual least square method are applied
in which y is the response variable and ln(x) is the regresses.
Let t = ln(x), we obtain: y = β0 + β1t. This is a linear relationship between y and
t, and the coefficients β0 and β1. These equations simplify to what is known as the
normal equations (see Section 5.2):

nβ0 + β1

n

∑
i=1

ti =
n

∑
i=1

yi and β0

n

∑
i=1

ti + β1

n

∑
i=1

t2
i =

n

∑
i=1

tiyi.

The solution to this system of equations is

β1 =
n ∑n

i=1 tiyi − ∑n
i=1 ti ∑n

i=1 yi

n ∑n
i=1 t2

i − (∑n
i=1 ti)

2 ,

β0 =
∑n

i=1 t2
i ∑n

i=1 yi − ∑n
i=1 ti ∑n

i=1 tiyi

n ∑n
i=1 t2

i − (∑n
i=1 ti)

2 .

b = a1; a = ea0 .
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Example 5.13. Fit a logarithmic functions y = β0 + β1 ln (x) from the following data:

x 1 2 3 4

y = f (x) 1.8 3.3 4.5 6.3

Solution: The logarithmic function is y = β0 + β1t, where t = ln(x).
The normal equations are

nβ0 + β1

n

∑
i=1

ti =
n

∑
i=1

yi

β0

n

∑
i=1

ti + β1

n

∑
i=1

t2
i =

n

∑
i=1

tiyi.

Table for calculations:

i x t y t2 ty

1 1 0 1.8 0 0

2 2 0.6931 3.3 0.4804 2.2872

3 3 1.0986 4.5 1.2069 4.943

4 4 1.3863 6.3 1.9218 8.7337

sum 3.1780 16.9 3.6091 15.9639

Since there are 4 pairs of values of t and y, hence here n = 4 and substitute the
above values in the above normal equations, we have

4β0 + 3.1780β1 = 16.9

3.1780β0 + 3.6091β1 = 15.9639.

Solving these equations, we get β0 = 2.3660 and β1 = 2.3399.
Therefore, the required least square line is y = 2.3660 + 2.3399 ln(x), which is the line
of best fit.

5.3.4 Power Functions

The power function equation describes many scientific and engineering phenomena.
In chemical engineering, the rate of chemical reaction is often written in power function
of the form of

y = axb.

The method of least squares is applied to the power function by first linearizing the
data (the assumption is that b is not known). If the only unknown is a, then a linear
relation exists between xb and y. The linearization of the data is as follows:

ln (y) = ln (a) + b ln (x) .
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CHAPTER 7 Transforming the data to use linear least square formulas

The resulting equation shows a linear relation between ln (y) and ln (x).

Let z = ln(y), w = ln(x), and A = ln a which imply a = eA, B = b.

We get:
z = A + Bw.

Hence,

B =
n ∑n

i=1 wizi − ∑n
i=1 wi ∑n

i=1 zi

n ∑n
i=1 w2

i − (∑n
i=1 wi)

2 ,

A =
∑n

i=1 w2
i ∑n

i=1 zi − ∑n
i=1 wi ∑n

i=1 wizi

n ∑n
i=1 w2

i − (∑n
i=1 wi)

2 .

Since A and B can be found, the original constants of the model are: b = B; a = eA.

Example 5.14. Fit the power curve of the form y = axb for the following data:

x 1 2 4 6

y = f (x) 6 4 2 2

Solution: Let the given equation be y = axb. Repeat the procedure in subsection 5.3.4,
we get z = A + Bw where A = ln(a), B = b, w = ln(x) and z = ln(y).
The normal equations are given by

nA + B
n

∑
i=1

wi =
n

∑
i=1

zi

A
n

∑
i=1

wi + B
n

∑
i=1

w2
i =

n

∑
i=1

wizi.

Table for calculations:

i x y w = ln(x) z = ln(y) w2 wz

1 1 6 0 1.79 0 0

2 2 4 0.693 1.386 0.48 0.96

3 4 2 1.386 0.693 1.92 0.96

4 6 2 1.79 0.693 3.2 1.24

sum 3.87 4.56 5.6 3.16

Here n = 4 and substitute the above values in the above normal equations, we have

4A + 3.87B = 4.56

3.87A + 5.6B = 3.16.
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CHAPTER 7 Transforming the data to use linear least square formulas

Solving these equations, we get A = 1.786 and B = −0.672.
Since A = ln(a) = 1.786 =⇒ a = eA = 5.965 and b = B = −0.672.
Hence, the required power curve is

y = 5.965x−0.672.

Example 5.15. Fit a curve y = axb to the following data:

x 1 2 3

y = f (x) 2.98 4.26 5.21

Solution: Let the given equation be y = axb. Repeat the procedure in subsection 5.3.4,
we get z = A + Bw where A = ln(a), B = b, w = ln(x) and z = ln(y).
The normal equations are given by

nA + B
n

∑
i=1

wi =
n

∑
i=1

zi

A
n

∑
i=1

wi + B
n

∑
i=1

w2
i =

n

∑
i=1

wizi.

Table for calculations:

i x y w = ln(x) z = ln(y) w2 wz

1 1 2.98 0 1.0919 0 0

2 2 4.26 0.6931 1.4493 0.4804 1.0045

3 3 5.21 1.0986 1.6506 1.2069 1.8133

sum 1.7917 4.1918 1.6873 2.8178

Here n = 6 and substitute the above values in the above normal equations, we have

3A + 1.7917B = 4.1918

1.7917A + 1.6873B = 2.8178.

Solving these equations, we get A = 1.0931 and B = 0.5092.
Since A = ln(a) = 1.0931 =⇒ a = eA = 2.9835 and b = B = 0.5092.
Hence, the required power curve is

y = 2.9835x0.5092.
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CHAPTER 7 EXERCISES

5.4 EXERCISES

1. Find the linear lest-squares solution for the following table of values:

x 4 7 11 13 17

y 2 0 2 6 7

2. By using the method of least-squares, find the constant function that best fits the
following data:

x -1 2 3

y 5
4

4
3

5
12

3. Find an equation of the form y = aex2
+ bx

3
that best fits the points (−1, 0), (0, 1)

and (1, 2) in the least-squares sense.

4. Find the equation of a parabola of form y = ax2 + b that best represents the
following data. Use the method of least squares.

x -1 0 1

y 3.1 0.9 2.9

5. What straight line best fits the following data

x 1 2 3 4

y 0 1 1 2

in the least-squares sense?

6. What constant c makes the expression ∑n
k=0[ f (xk)− cexk ]2 as small as possible?

7. Find an equation of the form y = (1 + b eax), y = a x + b x2, y = a x + b√
x , y =

a e−3x + b e−2x, y = b
x+a , y = b

x(x−a) and y = a + bxy that best fits the points (1,4),
(2,6), (3,8) and (4,9) in the least-squares sense.

8. Find the power fits y = Ax2, y = Bx3, y = C
x and y = D

x2 for the following data and
use the least-squares error to determine which curve fits best.

x 2 2.3 2.6 2.9 3.2

y 3 3.4 3.8 5 5.2
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CHAPTER 6

Numerical Integrations

6.1 Introduction

The process of evaluating a definite integral from a set of tabulated values of the
integrand f (x), which is not known explicit is called numerical integration. Numerical
integration, also known as quadrature, quadrature approximates the definite integral
as follows:

I =
∫ b

a
f (x)dx =

n

∑
i=0

Ai f (xi),

where the nodal abscissas xi and weights Ai depend on the particular rule used for
the quadrature. All rules of quadrature can be derived from polynomial interpolation
of the integrand as follows:

I =
∫ b

a
f (x)dx ≈

∫ b

a
Pn(x)dx

=
∫ b

a

n

∑
i=0

f (xi)li
n(x)dx =

n

∑
i=0

f (xi)
∫ b

a
li
n(x)dx =

n

∑
i=0

Ai f (xi), (6.1)

where Ai =
∫ b

a li
n(x)dx; i = 0, 1, . . . , n and Pn(x) Lagrange interpolation polynomial

of degree n.

Definition 6.1. The degree of accuracy or precision of a numerical integration formula
is the largest positive integer n such that the formula is exact for xk, for each k =0, 1, 2,
. . . , n.

In this chapter we derive several formulas for numerical integration

6.2 Trapezoidal Rule of Integration

In this method, the known function values are joined by straight lines. The area
enclosed by these lines between the given end points is computed to approximate the
integral as shown in Figure 6.1.

I =
∫ b

a
f (x) dx,

where f (x) is called the integrand, a = lower limit of integration, b = upper limit of
integration.
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CHAPTER 8 Trapezoidal Rule of Integration

Figure 6.1: Integration by Trapezoid rule.

6.2.1 Derivation of the Trapezoidal Rule

In this section, trapezoidal rule is derived by two different methods as follows:
Method 1: Derived from Lagrange Interpolation Polynomial
Since we have two points (a, f (a)) and (b, f (b)), we construct Lagrange interpolation
polynomial of degree one

f (x) ≈ P1(x) =
x − b
a − b

f (a) +
x − a
b − a

f (b),

which approximate f (x) between these two points (see Figure 6.1). From (6.1), we have

b∫
a

f (x)dx ≈
b∫

a

P1(x)dx =

b∫
a

(
x − b
a − b

f (a) +
x − a
b − a

f (b)
)

dx

=
f (a)

a − b

b∫
a

(x − b)dx +
f (b)

b − a

b∫
a

(x − a)dx

=
f (a)

a − b
(x − b)2

2

∣∣∣∣b
a
+

f (b)
b − a

(x − a)2

2

∣∣∣∣b
a

= − f (a)
a − b

(a − b)2

2
+

f (b)
b − a

(b − a)2

2

= − f (a)
(a − b)

2
+ f (b)

(b − a)
2

=
b − a

2
[ f (a) + f (b)]

=
h
2
[ f (a) + f (b)], (Trapezoid rule) (6.2)

where h = b − a in Trapezoid rule.
The error in the trapezoidal rule Etr) is the area of the region between f (x) and the
straight-line interpolant, as indicated in Figure 6.2.
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CHAPTER 8 Trapezoidal Rule of Integration

Figure 6.2: Error in Trapezoid rule.

It can be obtained by integrating the interpolation error

f (x)− P1(x) =
f ′′(ζ)

2!
(x − a)(x − b)

as follows:

Etr =
∫ b

a
[ f (x)− P1(x)]dx =

f ′′(ζ)
2!

∫ b

a
(x − a)︸ ︷︷ ︸

u

(x − b)dx︸ ︷︷ ︸
dv

=
f ′′(ζ)

2!

[
(x − a)

(x − b)2

2

∣∣∣∣b
a
−
∫ b

a

(x − b)2

2
dx

]

=
f ′′(ζ)

2!

[
− (x − b)3

6

∣∣∣∣b
a

]

= − (b − a)3

12
f ′′(ζ), a ≤ ζ ≤ b

= − h3

12
f ′′(ζ). (6.3)

Method 2: Derived from Newton Forward Difference interpolation
The trapezoidal rule can also be derived from Newton forward difference interpo-

lation polynomial

Pn(x) = f (x0) + s∆ f (x0) +
s(s − 1)

2!
∆2 f (x0) + · · ·

+
s(s − 1)(s − 2) · · · (s − n + 1)

n!
∆n f (x0). (6.4)

Look at Figure 6.2. The area under the curve f (x) is the area of a trapezoid. Substituting
s = 1 in Equation (6.4) and considering the curve y = f (x) through the points
(a = x0, y0) and (b = x1, y1) as a straight line (a polynomial of first degree so that the
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CHAPTER 8 Composite Trapezoidal Rule of Integration

differences of order higher than first vanished), we get:

I1 =

b∫
a

f (x)dx =

x1∫
x0

f (x)dx =

x1∫
x0

(y0 + s∆y0)dx = h
1∫

0

(y0 + s∆y0)ds

= h
[

y0 +
1
2

∆y0

]
=

h
2

[
y0 +

1
2
(y1 − y0)

]
=

h
2
[y0 + y1]

=
h
2
[ f (a) + f (b)] =

h
2
[ f (x0) + f (x1)].

To find the error Etr:
The error in approximating f (x) by Newton forward difference interpolation polyno-
mial of degree one i.e. P1(x) = y0 + s∆y0 is equal to:

f (x)− P1(x) =
s(s − 1)

2!
h2 f ′′(ζ), a = x0 ≤ ζ ≤ b = x1.

Hence

Etr =
∫ b

a
[ f (x)− P1(x)]dx =

∫ x1

x0

[ f (x)− P1(x)]dx

=
∫ x1

x0

[
s(s − 1)

2!
h2 f ′′(ζ)]dx = h

∫ 1

0
[
s(s − 1)

2!
h2 f ′′(ζ)]ds

=
h3

2
f ′′(ζ)

∫ 1

0
[s(s − 1)]ds =

h3

2
f ′′(ζ)

[
s3

3
− s2

2

]1

0

=
h3

2
f ′′(ζ)

[
1
3
− 1

2

]
= − h3

12
f ′′(ζ).

6.3 Composite Trapezoidal Rule of Integration

Consider the integral I =
∫ b

a f (x)dx.
Let us divide the interval (a, b) into n sub intervals of width h so that:

x0 = a, x1 = x0 + h, x2 = x1 + h = x0 + 2h, . . . , xn = xn−1 + h = x0 + nh = b,

where h = b−a
n ; n even or odd natural number.

Now

I =
∫ b

a
f (x)dx =

∫ xn

x0

f (x)dx

=
∫ x1

x0

f (x)dx +
∫ x2

x1

f (x)dx +
∫ x3

x2

f (x)dx + . . . +
∫ xn

xn−1

f (x)dx

=
h
2
[ f (x0) + f (x1)] +

h
2
[ f (x1) + f (x2)] +

h
2
[ f (x2) + f (x3)] + . . .

+
h
2
[ f (xn−1) + f (xn)] by using (6.2)

=
h
2
[ f (x0) + 2 f (x1) + 2 f (x2) + . . . + 2 f (xn−1) + f (xn)].
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CHAPTER 8 Composite Trapezoidal Rule of Integration

Hence, the total area, representing
∫ b

a f (x)dx, is:

I =
∫ b

a
f (x)dx

=
h
2
[ f (x0) + 2 f (x1) + 2 f (x2) + . . . + 2 f (xn−1) + f (xn)]

=
h
2

[
f (x0) + 2

{
n−1

∑
i=1

f (xi)

}
+ f (xn)

]
. (6.5)

Which is the composite trapezoidal rule (method).

Figure 6.3: Composite trapezoidal rule approximations.

6.3.1 Error in Composite Trapezoidal Rule

The true error for a single segment Trapezoidal rule is given by:

Et = − h3

12
f ′′(ζ), a < ζ < b,

where h = b−a
n .

The error in each segment is:

E1 = − h3

12
f ′′(ζ1), x0 = a < ζ1 < x1.

E2 = − h3

12
f ′′(ζ2), x1 < ζ2 < x2.

...

En = − h3

12
f ′′(ζn), xn−1 < ζn < xn = b.

Hence, the total error in the composite trapezoidal rule is:

Et =
n

∑
i=1

Ei = − h3

12

n

∑
i=1

f ′′(ζi) = − h3

12n3

n

∑
i=1

f ′′(ζi)

= − (b − a)3

12n2
∑n

i=1 f ′′(ζi)

n
= − (b − a)

12
h2 f ′′(ζ); x0 = a < ζ < xn = b.
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Hence
Et = − (b − a)

12
h2 f ′′(ζ); x0 = a < ζ < xn = b.

Example 6.1. Use the trapezoidal rule to numerically integrate
∫ 2

0 (0.2 + 25 x)dx.

Solution: Let f (x) = 0.2 + 25 x, f (a) = f (0) = 0.2, f (b) = f (2) = 50.2 and b−a
2

f rac2 − 02 = 1.

I =
∫ 2

0
f (x)dx =

h
2
[ f (a) + f (b)]

=
1
2
[0.2 + 50.2] = 50.4.

The true solution is:

I =
2∫

0

f (x) dx = (0.2 x + 12.5 x2)
]2

0
= 50.4.

Since f (x) is a linear function, using the trapezoidal rule gets the exact solution,
because f ′′(x) = 0 (see (6.3)).

Example 6.2. Use the trapezoidal rule to numerically integrate
∫ 2

0 (0.2 + 25 x + 3 x2)dx.

Solution: Let f (x) = 0.2 + 25 x + 3 x2. Hence f (a) = f (0) = 0.2, f (b) = f (2) = 62.2
and
h = b−a

2 = 2−0
2 = 1. Using the Trapezoid rule, we get

I =
∫ 2

0
f (x)dx =

h
2
[ f (a) + f (b)]

=
1
2
[0.2 + 62.2] = 62.4.

The true solution is:

I =
2∫

0

f (x) dx = (0.2 x + 12.5 x2 + x3)
]2

0
= 58.4.

The relative error is: ∣∣∣∣∈t =

∣∣∣∣58.4 − 62.4
58.4

∣∣∣∣∣∣∣∣× 100 % = 6.85 %.

Example 6.3. Approximate the integral
∫ π

0 sin (x) dx using composite trapezoidal rule
for n = 4 and n = 8.

Solution:
The exact value of the integral is∫ π

0
sin (x) dx = [− cos (x)]π0 = 2.
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As n = 4, h = b−a
n = π

4 ,∫ π
0 sin (x) dx ≈ π

2·4
[
sin (0) + 2 sin

(
π
4

)
+ 2 sin

(2π
4

)
+ 2 sin

(3π
4

)
+ sin (π)

]
= π

8

[
0 +

√
2 + 2 +

√
2 + 0

]
=

π(1+
√

2)
4

≈ 1.896

As n = 8, h = π
8 ,∫ π

0 sin (x) dx ≈ π
2·8
[
sin (0) + 2 sin

(
π
8

)
+ · · ·+ 2 sin

(7π
8

)
+ sin (π)

]
= π

16

[
2 + 2

√
2 + 4 sin

(
π
8

)
+ 4 sin

(3π
8

)]
≈ 1.974

The question to ask: how accurate the above approximations are?
The error for the trapezoidal rule is denoted as

Etr =
∫ b

a
f (x) dx −

(
h
2

)
[ f (x0) + 2 f (x1) + · · ·+ 2 f (xn−1) + f (xn)] ,

the accuracy of the trapezoidal rule:
∣∣∣ f ′′ (x)

∣∣∣ ≤ M for x ∈ [a, b]. Then,

|Etr| ≤ M · (b − a)3

12n2 .

The above result can be used to obtain the required number of partitions, n.

Example 6.4. Determine a value of n so that the composite trapezoidal rule will
approximate the value of

∫ 1
0

√
1 + x2dx with an error that is less than 0.01.

Solutions:

f (x) =
√

1 + x2, f
′
(x) = x

(
1 + x2

)−1/2 , f
′′
(x) =

(
1 + x2

)−3/2 .

Since the maximum value of f
′′
(x) on [0, 1] is 1, i.e.,

∣∣∣ f ′′ (x)
∣∣∣ = (1 + x2

)−3/2 ≤ 1, x ∈ [0, 1] .

Thus,

|Etr| ≤ M · (b − a)3

12n2 = 1 · (1 − 0)3

12n2 =
1

12n2 .

As
1

12n2 ≤ 0.01 ⇔ 12n2 ≥ 100 ⇔ n ≥ 2.89 ⇒ n = 3,

the error is smaller than 0.01. As n = 3, h = 1
3 ,

∫ 1
0

√
1 + x2dx ≈ 1

2·3

[
√

1 + 02 + 2

√
1 +

(
1/3
)2

+ 2

√
1 +

(
2/3
)2

+ 2
√

1 + 12

]
= 1.154
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Thus, ∣∣∣∫ 1
0

√
1 + x2dx − 1.154

∣∣∣ ≤ 0.01

⇔ 1.144 = 1.154 − 0.01 ≤
∫ 1

0

√
1 + x2dx ≤ 1.154 + 0.01 = 1.164.

Example 6.5. Use the composite trapezoidal rule to find the area under the curve
f (x) = 300x

1+ex from x = 0 to x = 10 with n = 2.

Solution: Using n = 2, we get: h = 10−0
2 = 5,

f (0) =
300 × 0
1 + e0 = 0, f (5) =

300 × 5
1 + e5 = 10.039, f (10) =

300 × 10
1 + e10 = 0.136,

I ≈ h
2

[
f (a) + 2

{
n−1

∑
i=1

f (a + ih)

}
+ f (b)

]
5
2

[
f (0) + 2

{
2−1

∑
i=1

f (0 + 5)

}
+ f (10)

]
=

5
2
[ f (0) + 2 f (5) + f (10)]

=
5
2
[0 + 2(10.039) + 0.136] = 50.537.

So what is the true value of this integral?∫ 10

0

300x
1 + ex dx = 246.59.

Making the absolute relative true error

|∈t| =
∣∣∣∣246.59 − 50.535

246.59

∣∣∣∣× 100 = 79.506%

Example 6.6. Use composite trapezoidal rule to find I =
∫ 2

0
1√
x dx with n =.

Solution: We cannot use the trapezoidal rule for this integral, as the value of the
integrand at x = 0 is infinite. However, it is known that a discontinuity in a curve will
not change the area under it. We can assume any value for the function at x = 0. The
algorithm to define the function so that we can use the multiple-segment trapezoidal
rule is given below:

Function f (x)
If x = 0 Then f = 0
If x ̸= 0 Then f = x−0.5

End Function
Basically, we are just assigning the function a value of zero at x = 0. Everywhere
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CHAPTER 8 Composite Trapezoidal Rule of Integration

else, the function is continuous. This means that the true value of our integral will be
just that-true. Let’s see what happens using the composite trapezoidal rule. Using two
segments i.e. n = 2, we get:

h =
2 − 0

2
= 1, f (0) = 0, f (1) =

1√
1
= 1, f (2) =

1√
2
= 0.70711,

I ≈ h
2

[
f (a) + 2

{
n−1

∑
i=1

f (a + ih)

}
+ f (b)

]

=
1
2

[
f (0) + 2

{
2−1

∑
i=1

f (0 + 1)

}
+ f (2)

]
=

1
2
[ f (0) + 2 f (1) + f (2)]

=
1
2
[0 + 2(1) + 0.70711] = 1.3536.

So what is the true value of this integral?
∫ 2

0
1√
x dx = 2.8284.

Thus, making the absolute relative true error

|∈t| =
∣∣∣∣2.8284 − 1.3536

2.8284

∣∣∣∣× 100 = 52.145%.

Table (6.1) Values obtained using composite trapezoidal rule for
∫ 2

0
1√
x dx.

n Approximate

Value

Et |∈t|

2 1.354 1.474 52.14%

4 1.792 1.036 36.64%

8 2.097 0.731 25.85%

16 2.312 0.516 18.26%

32 2.463 0.365 12.91%

64 2.570 0.258 9.128%

128 2.646 0.182 6.454%

256 2.699 0.129 4.564%

512 2.737 0.091 3.227%

1024 2.764 0.064 2.282%

2048 2.783 0.045 1.613%

4096 2.796 0.032 1.141%

Example 6.7. Compute the composite trapezoidal approximation for
∫ 2

0
√

xdx using a
regular partition with n = 4. Compare the estimate with the exact value.
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Solution: So with n = 4, each subinterval will have length h = b−a
4 = 1

2 .
Then x0 = 0 =; x1 = x0 + h = 1

2 ; x2 = x1 + h = 1
2 +

1
2 = 1; x3 = x2 + h = 1 + 1

2 = 3
2

and x4 = x3 + h = 3
2 +

1
2 = 4

2 = 2.

I =
∫ 2

0

√
xdx

=
h
2
[ f (x0) + 2 f (x1) + 2 f (x2) + 2 f (x3) + f (x4)]

=
1
4
[
√

0 + 2

√
1
2
+ 2

√
1 + 2

√
3
2
+
√

2]

=
1
4
[0 +

√
2 + 2 +

√
6 +

√
2] =

1
4
[2 + 2

√
2 +

√
6 +

√
2] ≈ 1.81948.

The exact value of the integral is

∫ 2

0

√
xdx =

2
3

x
3
2

∣∣∣∣2
0
=

2
3

2
3
2 − 2

3
0

3
2 =

2
3
[2
√

2] = 1.88562.

The approximation underestimates the actual area, the error is

1.88562 − 1.81948 = 0.06614

and that is
0.06614
1.88562

≈ 0.035076

or 3.51% of the exact value.

Example 6.8. Evaluate the integral
∫ 1.2

0 exdx, taking six intervals by using composite
trapezoidal rule.

Solution: Since a = 0, b = 1.2, n = 6, hence h = b−a
n = 1.2−0

6 = 0.2.

x 0 0.2 0.4 0.6 0.8 1.0 1.2

y = f(x) 0

y0

1.221

y1

1.492

y2

1.822

ys

2.226

y4

2.718

y5

3.320

y6

The trapezoidal rule can be written as

I =
h
2
[y0 + 2y1 + 2y2 + 2y3 + 2y4 + 2y5 + y6]

=
0.2
2
[0 + 2(1.221 + 1.492 + 1.822 + 2.226 + 2.718) + 3.320]

= 2.328.

The exact value is =
∫ 1.2

0 exdx = 2.320.

96



CHAPTER 8 Composite Trapezoidal Rule of Integration

Example 6.9. Evaluate
∫ 12

0
1

1+x2 dx by using composite trapezoidal rule, taking n = 6.

Solution: Since a = 0, b = 12, n = 6, hence h = b−a
n = 12−0

6 = 2.

x 0 2 4 6 8 10 12

y = f(x) 1.00000 0.20000 0.05882 0.02703 0.01538 0.00990 0.00690

The trapezoidal rule can be written as

I =
h
2
[y0 + 2y1 + 2y2 + 2y3 + 2y4 + 2y5 + y6]

=
2
2
[1 + 2(0.2 + 0.05882 + 0.02703 + 0.01538 + 0.00990) + 0.00690]

= 1.62916.

The exact value is ∫ 12

0

1
1 + x2 dx = tan−1(x)

∣∣∣12

0
= 1.48766.

Example 6.10. Use composite trapezoid rule with n = 5 estimate
∫ 5

1

√
1 + x2dx.

Solution: For n = 5, we have h = b−a
n = 5−1

5 = 0.8.
Computing the values for y0, y1, y2, y3, y4, y5.

x 1 1.8 2.6 3.4 4.2 5

y =
√

1 + x2

1.41 2.06 2.78 3.54 4.32 5.10

The trapezoidal rule can be written as

I =
h
2
[y0 + 2y1 + 2y2 + 2y3 + 2y4 + y5]

=
.8
2
[1.41 + 2(2.06 + 2.78 + 3.54 + 4.32) + 5.10]

= 12.284.

Example 6.11. Use composite trapezoid rule with n = 4 estimate
∫ 6

1 x4dx.

Solution: For n = 4, we have h = b−a
n = 6−1

4 = 1.25.

x0 = 1, x1 = 2.25, x2 = 3.5, x3 = 4.75, x4 = 6.

Computing the values for y0, y1, y2, y3, y4.
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x 1 2.25 3.5 4.75 6

y =
√

1 + x2

1 25.628 150.06 509.06 1296

The trapezoidal rule can be written as

I =
∫ 6

1
x4dx =

h
2
[y0 + 2y1 + 2y2 + 2y3 + y4]

=
1.25

2
[1 + 2(25.628 + 150.06 + 509.06) + 1296]

= 1662.81.

The exact value is ∫ 6

1
x4dx =

x5

5

∣∣∣∣6
1
= 1555.

Example 6.12. Consider evaluating
∫ 2

0
1

1+x2 dx using composite trapezoid method. How
large should n be chosen in order to ensure that

|Ectm| ≤ 5 × 10−6. (6.6)

Solution: We begin by calculating the derivatives:

f ′(x) =
−2x

(1 + x2)2 , f ′′(x) =
−2 + 6x2

(1 + x2)3 .

From a graph of f ′′(x),
max

0≤x≤2

∣∣ f ′′(x)
∣∣ = 2.

Therefore
Ectm = − (b−a)h2

12 f ′′(c), hence
∣∣∣Ectm ≤ 2h2

12 × (2)
∣∣∣ = h2

3 .
To ensure this, we choose h so small that

h2

3
≤ 5 × 10−6.

This is equivalent to choosing h and n to satisfy

h ≤ 0.003873 =⇒ n =
2
h
≥ 516.4.

Thus n ≥ 517 will imply (6.6)

Example 6.13. Determine the values of n and h required to approximate
∫ 2

0 e2xdx
within (error≤ 5 × 10−4) using composite trapezoid method.
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Solution: We begin by calculating the derivatives:

f ′(x) = 2e2x, f ′′(x) = 4e2x.

From a graph of f ′′(x),
max

0≤x≤2

∣∣ f ′′(x)
∣∣ = 218.3.

Therefore
Ectr = − (b−a)h2

12 f ′′(c), hence |Ectr| ≤ 2h2

12 × (218.3) = 218.3h2

6 .
To ensure this, we choose h so small that

218.3h2

6
≤ 5 × 10−4.

This is equivalent to choosing h and n to satisfy

h ≤ 0.003707095374473 =⇒ n =
2
h
≥ 539.5.

Thus n ≥ 540 will imply the result.

6.4 Simpson’s 1/3 Rule

The trapezoidal rule was based on approximating the integrand by a first order
polynomial, and then integrating the polynomial over interval of integration. Simpson’s
1/3 rule is an extension of Trapezoidal rule where the integrand is approximated by a
second order polynomial.

Figure 6.4: Simpson’s 1/3 Integration of a function.

6.4.1 Derivation of the Simpson 1/3 Rule

In Simpson’s 1/3 rule the integrand is approximated by a second order polynomial.
To construct a second degree polynomial, we need three points. Let x0 = a, x1 = b+a

2 ,
x2 = b, hence the interval width h = b−a

2 .
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Method 1: Derived from Lagrange Interpolation Polynomial
Since we have three points (a = x0, y0), (x1, y1) and (x2 = b, y2) where yi = f (xi) for
i = 0, 1, 2, we construct Lagrange interpolation polynomial of degree two:

P2(x) =
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
f (x0) +

(x − x0)(x − x2)

(x1 − x0)(x1 − x2)
f (x1)

+
(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
f (x2).

Using (6.1), we obtain:

I =
∫ x2=b

x0=a
f (x)dx ≈

∫ x2=b

x0=a
P2(x)dx

= f (x0)
∫ x2

x0

(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
dx + f (x1)

∫ x2

x0

(x − x0)(x − x2)

(x1 − x0)(x1 − x2)
dx

+ f (x2)
∫ x2

x0

(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
dx. (6.7)

Since the points are equally spaced nodes, we have x2 − x1 = x1 − x0 = h, x2 − x0 = 2h.
Hence

I1 = f (x0)
∫ x2

x0

(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
dx =

f (x0)

2h2

∫ x2

x0

(x − x1)(x − x2)dx

=
f (x0)

2h2

[
(x − x1)

(x − x2)
2

2

∣∣∣∣x2

x0

−
∫ x2

x0

(x − x2)
2

2
dx

]

=
f (x0)

2h2

[
2h3 − (x − x2)

3

6

∣∣∣∣x2

x0

]
=

f (x0)

2h2

[
2h3 − 8h3

6

]
=

f (x0)

2h2

[
2h3

3

]
=

h
3

f (x0).

Similarly;

I2 = f (x1)
∫ x2

x0

(x − x0)(x − x2)

(x1 − x0)(x1 − x2)
dx =

4
3

h f (x1),

and
I3 = f (x2)

∫ x2

x0

(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
dx =

1
3

h f (x2).

Substituting the value of I1, I2 and I3 in (6.7), we obtain

I =
∫ x2

x0

f (x)dx = I1 + I2 + I3

=
h
3
[ f (x0) + 4 f (x1) + f (x2)] where h =

b − a
2

(Simpson 1/3 rule)

=
b − a

6
[ f (a) + 4 f

(
b + a

2

)
+ f (b)] + Esm, (6.8)

where Esm = − (b−a)5

2880 f (4)(ζ) = − h5

90 f (4)(ζ), a < ζ < b.
The formula (6.8) which can be viewed as the sum of the areas of three rectangles.
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Method 2: Derived from Newton Forward Difference interpolation Polynomial
Since a second degree polynomial contains three constants, it is necessary to know

three consecutive function values forming two intervals as shown in Figure 6.4.
Substituting s = 2 in the Equation (6.4) and taking the curve through the points (x0, y0),
(x1, y1) and (x2, y2) as a polynomial of second degree (parabola) so that the differences
of order higher than two vanished, we obtain:

I1 =
∫ x2

x0

f (x)dx = 2h
[

y0 + 4∆y0 +
1
6

∆2y0

]
=

h
3
(y0 + 4y1 + y2)

=
h
3
[ f (x0) + 4 f (x1) + f (x2)] + Esm, (Simpson 1/3 rule) (6.9)

where Esm = − (b−a)5

2880 f (4)(ζ) = − h5

90 f (4)(ζ), a < ζ < b.

6.5 Composite Simpson 1/3 Rule of Integration

Consider the integral I =
∫ b

a f (x)dx.
Let us divide the interval (a, b) into n sub intervals of width h so that:

x0 = a, x1 = x0 + h, x2 = x1 + h = x0 + 2h, . . . , xn = xn−1 + h = x0 + nh = b,

where h = b−a
n ; n even natural number.

Now using (6.8), we obtain

I =
∫ b

a
f (x)dx =

∫ xn

x0

f (x)dx

=
∫ x2

x0

f (x)dx +
∫ x4

x2

f (x)dx + . . . +
∫ xn

xn−2

f (x)dx

=
h
3
[ f (x0) + 4 f (x1) + f (x2)] +

h
3
[ f (x2) + 4 f (x3) + f (x4)] + . . .

+
h
3
[ f (xn−2) + 4 f (xn−1) + f (xn)]

=
h
3
[ f (x0) + 4( f (x1) + f (x3) + . . . + f (xn−1))

+ 2( f (x2) + f (x4) + . . . + f (xn−2)) + f (xn)]

=
h
3
[O1 + 4O2 + 2O3], (6.10)

where O1 = f (x0) + f (xn) (sum of end ordinates), O2 = f (x1) + f (x3) + . . . + f (xn−1)

(sum of odd ordinates), O3 = f (x2) + f (x4) + . . . + f (xn−2) (sum of even ordinates).
Equation (6.10) is known as Composite Simpson’s 1/3 rule. Also can be written as
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follows:

∫ b

a
f (x)dx ∼=

b − a
3n


f (t0) + 4

n−1

∑
i = 1
i = odd

f (ti) + 2
n−2

∑
i = 2
i = even

f (ti) + f (tn)


.

Figure 6.5: Composite Simpson 1/3 method.

6.5.1 Error in Composite Simpson’s 1/3 Rule

The true error in a single application of Simpson’s 1/3 rule is given by

Et = − (b − a)5

2880
f (4)(ζ), a < ζ < b.

In composite Simpson’s 1/3 rule, the error is the sum of the errors in each applica-
tion of Simpson’s 1/3 rule. The error in the n segments Simpson’s 1/3 rule is given
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by:

E1 = − (x2 − x0)
5

2880
f (4)(ζ1) = − h5

90
f (4)(ζ1), x0 < ζ1 < x2.

E2 = − (x4 − x2)
5

2880
f (4)(ζ2) = − h5

90
f (4)(ζ2), x2 < ζ2 < x4.

...

Ei = −
(x2i − x2(i−1))

5

2880
f (4)(ζi) = − h5

90
f (4)(ζi), x2(i−1) < ζi < x2i.

...

En
2−1 = − (xn−2 − xn−4)

5

2880
f (4)(ζ n

2−1)

= − h5

90
f (4)(ζ n

2−1), xn−4 < ζ n
2−1 < xn−2.

and

En
2
= − (xn − xn−2)

5

2880
f (4)

(
ζ n

2

)
= − h5

90
f (4)

(
ζ n

2

)
, xn−2 < ζ n

2
< xn.

Hence, the total error in the composite Simpson’s 1/3 rule is

Esm =

n
2

∑
i=1

Ei = − h5

90

n
2

∑
i=1

f (4) (ζi) ,

where x2i−2 < ζ < x2j; j = 1, 2 . . . , n
2 .

If f ∈ C4[a, b], the Extreme Value Theorem [If f ∈ C[a, b], then c1, c2 ∈ [a, b] exist
with f (c1) ≤ f (x) ≤ f (c2), for all x ∈ [a, b]. In addition, if f is differentiable on (a, b),
then the numbers c1 and c2 occur either at the endpoints of [a, b] or where f ′ is zero.]
implies that f (4) assumes its maximum and minimum in [a, b]. Since

min
x∈[a,b]

f (4)(x) ≤ f (4)(ζ j) ≤ max
x∈[a,b]

f (4)(x),

we have
n
2

min
x∈[a,b]

f (4)(x) ≤
n
2

∑
j=1

f (4)(ζ j) ≤
n
2

max
x∈[a,b]

f (4)(x)

and

min
x∈[a,b]

f (4)(x) ≤ 2
n

n
2

∑
j=1

f (4)(ζ j) ≤ max
x∈[a,b]

f (4)(x),

By the Intermediate Value Theorem [If f ∈ C[a, b] and K is any number between f (a)
and f (b), then there exists a number c in (a, b) for which f (c) = K.], there is a ζ ∈ (a, b)
such that

f (4)(ζ) =
2
n

n
2

∑
j=1

f (4)(ζ j).
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Thus

Esm = − h5

90

n
2

∑
i=1

f (4) (ζi) = −h5n
180

f (4)(ζ),

or, since h = b−a
n ,

Esm = − (b − a)
180

h4 f (4)(ζ).

Example 6.14. Use Simpson’s 1/3 rule to integrate f (x) = 0.2 + 25x + 3x2 + 8x3 from
a = 0 to b = 2.

Solution: let f (0) = 0.2 , f (1) = 36.2 and f (2) = 126.2, h = b−a
2 = 2−0

2 = 1.

I =
h
3
[ f (0) + 4 f (1) + f (2)]

=
1
3
[0.2 + 4(36.2) + 126.2] = 90.4

The exact integral is

I =
∫ 2

0
f (x) dx = (0.2 x + 12.5 x2 + x3 + 2x4)

]2

0
= 90.4.

Example 6.15. Use Simpson’s 1/3 rule to integrate f (x) = 0.2 + 25x + 3x2 + 2x4 from
a = 0 to b = 2.

Solution: Let f (0) = 0.2 , f (1) = 30.2 f (2) = 94.2 and h = b−a
2 = 2−0

2 = 1.

I =
h
3
[ f (0) + 4 f (1) + f (2)]

=
1
3
[0.2 + 4(30.2) + 94.2] = 71.73

The exact integral is:

I =
∫ 2

0
f (x) dx = (0.2 x + 12.5 x2 + x3 + 0.4x5)

]2

0
= 71.2.

The relative error is:

|∈t| =
∣∣∣∣71.2 − 71.73

71.2

∣∣∣∣× 100 % = 0.7 %.

Example 6.16. Evaluate
∫ 6

0
1

1+x2 dx by using (i) Trapezoid rule, (ii) Simpson 1/3 rule,
(iii) Composite trapezoid rule with n = 6, (iv) Composite Simpson method with n = 6.

Solution: Here f (x) = 1
1+x2 .

(i) f (a) = f (0) = 1, f f (b) = f (6) = 1
37 and h = b − a = 6. Hence∫ 6

0

1
1 + x2 dx =

h
2
[ f (a) + f (b)]

=
6
2
[1 +

1
37

] =
114
37

= 3.08108.
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(ii) Let h = b−a
2 = 6−0

2 = 3, hence x0 = a = 0, x1 = x0 + h = 3 and x2 = x1 + h = 6 = b.
f (x0) = f (0) = 1, f (x1) = f (3) = 1

10 and f (x2) = f (6) = 1
37 . Hence∫ 6

0

1
1 + x2 dx =

h
3
[ f (x0) + 4 f (x1) + f (x2)]

=
3
3
[1 + 4(

1
10

) +
1
37

] =
185 + 74 + 5

185
=

264
185

= 1.427027.

For (iii) and (iv) h = b−a
n = 6−0

6 = 1. and we form the follwing table:

x 0 1 2 3 4 5 6

f (x) 1 0.5 0.2 0.1 0.0588 0.0385 0.0270

(iii)∫ 6

0

1
1 + x2 dx =

h
2
[ f (x0) + 2( f (x1) + f (x2) + f (x3) + f (x4) + f (x5)) + f (x6)]

=
1
2
[1 + 2((0.5 + 0.2 + 0.1 + 0.0588 + 0.0385) + 0.0270] = 1.4108.

(iv)∫ 6

0

1
1 + x2 dx =

h
3
[ f (x0) + 2( f (x1) + f (x3) + f (x5)) + 2( f (x2) + f (x4)) + f (x6)]

=
1
3
[1 + 4(0.5 + 0.1 + 0.0385) + 2(0.2 + 0.0588) + 0.0270] = 1.3662.

Example 6.17. Approximate the integral
∫ π

0 sin (x) dx using composite Simpson rule
for n = 4 and n = 8.

Solution: As n = 4, h = b−a
n = π

4 ,∫ π
0 sin (x) dx ≈ π

3·4
[
sin (0) + 4 sin

(
π
4

)
+ 2 sin

(2π
4

)
+ 4 sin

(3π
4

)
+ sin (π)

]
= π

12

[
4
√

2 + 2
]

≈ 2.005

As n = 8, FH = π
8 ,∫ π

0 sin (x) dx ≈ π
3·8
[
sin (0) + 4 sin

(
π
8

)
+ 2 sin

(2π
8

)
+ · · ·+ 4 sin

(7π
8

)
+ sin (π)

]
= π

24

[
2 + 2

√
2 + 8 sin

(
π
8

)
+ 8 sin

(3π
8

)]
≈ 2.0003

The question to ask: how accurate the above approximations are?
while the error for the Simpson’s rule is denoted as

Esm =
∫ b

a
f (x)dx − h

3
[ f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + 2 f (x4) + · · ·

+4 f (xn−1) + f (xn)] .
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The accuracy of the Simpson’s rule:
∣∣∣ f (4) (x)

∣∣∣ ≤ M for x ∈ [a, b]. Then,

|Esm| ≤ M · (b − a)5

180n4 .

The above results can be used to obtain the required number of partitions, n.

Example 6.18. Compute the composite Simpson approximation for
∫ 2

0
√

xdx using a
regular partition with n = 4. Compare the estimate with the exact value.

Solution: So with n = 4, each subinterval will have length h = b−a
4 = 1

2 .
Then x0 = 0 =; x1 = x0 + h = 1

2 ; x2 = x1 + h = 1
2 +

1
2 = 1; x3 = x2 + h = 1 + 1

2 = 3
2

and x4 = x3 + h = 3
2 +

1
2 = 4

2 = 2.

I =
∫ 2

0

√
xdx

=
h
3
[ f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + f (x4)]

=
1
6
[
√

0 + 4

√
1
2
+ 2

√
1 + 4

√
3
2
+
√

2]

=
1
6
[0 + 2

√
2 + 4 + 2

√
6 +

√
2] ≈ 1.856936.

The exact value of the integral is

∫ 2

0

√
xdx =

2
3

x
3
2

∣∣∣∣2
0
== 1.88562.

The approximation underestimates the actual area, the error is is

1.88562
1.8569367

≈ 0.0286833

and that is
0.0286833 − 1.88562 = 0.01521

or 1.52% of the exact value.

Example 6.19. Determine a value of n so that the composite Simpson’s rule will
approximate the value of

∫ 1
0 cos

(
x2) dx with an error that is less than 0.001.

Solutions:

f (x) = cos
(

x2
)

⇔ f (4) (x) = 4
[(

4x3 − 3
)

cos
(

x2
)
+ 12x2 sin

(
x2
)]

.

As x = 1, f (4) (x) attains its maximum over [0, 1], i.e.,∣∣∣ f (4) (x)
∣∣∣ ≤ 4 [cos (1) + 12 sin (1)] ≈ 42.6 ≤ 43, x ∈ [0, 1] .
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Let M = 43.

|Esm| ≤ M · (b − a)5

180n4 = 43 · (1 − 0)5

180n4 =
43

180n4 .

As
43

180n4 ≤ 0.01 ⇔ n4 ≥ 4300
180

= 23.88 ⇔ n ≥ 2.2 ⇒ n = 4.

Example 6.20. Use composite trapezoid rule and composite Simpson method, estimate
the integral

∫ 2
0 (x3 + x)dx with n = 4 steps.

Solution: Let f (x) = x3 + x. For a = 0, b = 2 and n = 4, we have h = b−a
n = 2−0

4 = 0.5.

x0 = 0, x1 = 0.5, x2 = 1, x3 = 1.5, x4 = 2.

Computing the values for yi = f (xi); i =0, 1, 2, 3, 4, we have:

y0 = 0, y1 = 0.625, y2 = 2, y3 = 4.875, y4 = 10.

Now plug the values into the rule, we get
By Composite trapezoid Rule:

I =
∫ 2

0
(x3 + x)dx =

h
2
[y0 + 2y1 + 2y2 + 2y3 + y4]

=
0.5
2
[0 + 2(0.625 + 2 + 4.875) + 10] = 6.26.

The exact value is ∫ 2

0
(x3 + x)dx = (

x4

4
+

x2

2
)

∣∣∣∣2
0
=

16
4

4
2
= 6.

By composite Simpson Rule:

I =
∫ 2

0
(x3 + x)dx =

h
3
[y0 + 4y1 + 2y2 + 4y3 + y4]

=
0.5
3
[0 + 4(0.625) + 2(2) + 4(4.875) + 10] =

1
6
[0 + 2.5 + 4 + 19.5 + 10] = 6.

Example 6.21. Use composite trapezoid rule and composite Simpson method with
n = 4 estimate

∫ 3
1 (2x − 1)dx.

Solution: Let f (x) = 2x − 1. For a = 1, b = 3 and n = 4, we have h = b−a
n = 3−1

4 = 0.5.

x0 = 1, x1 = 1.5, x2 = 2, x3 = 2.5, x4 = 3.

Computing the values for yi = f (xi); i =0, 1, 2, 3, 4, we have:

y0 = 1, y1 = 2, y2 = 3, y3 = 4, y4 = 5.
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Now plug the values into the rule, we get
By Composite trapezoid Rule:

I =
∫ 3

1
(2x − 1)dx =

h
2
[y0 + 2y1 + 2y2 + 2y3 + y4]

=
0.5
2
[1 + 2(2 + 3 + 4) + 5] = 6.

The exact value is∫ 3

1
(2x − 1)dx = (x2 − x)

∣∣∣3
1
= (9 − 3)− (1 − 1) = 6.

By composite Simpson Rule:

I =
∫ 3

1
(2x − 1)dx =

h
3
[y0 + 4y1 + 2y2 + 4y3 + y4]

=
0.5
3
[1 + 4(2) + 2(3) + 4(4) + 5] =

1
6
[1 + 8 + 6 + 16 + 5] = 6.

Example 6.22. Use composite trapezoid rule and composite Simpson method, estimate
the integral

∫ π
0 sin(x)dx with n = 4 steps.

Solution: Let f (x) = sin(x). For a = 0, b = π and n = 4, we have h = b−a
n = π−0

4 = π
4 .

x0 = 0, x1 =
π

4
, x2 =

π

2
, x3 =

3π

4
, x4 = π.

Computing the values for yi = f (xi); i =0, 1, 2, 3, 4, we have:

y0 = 0, y1 =
1√
2

, y2 = 1, y3 =
1√
2

, y4 = 0.

Now plug the values into the rule, we get
By Composite trapezoid Rule:

I =
∫ π

0
sin(x)dx =

h
2
[y0 + 2y1 + 2y2 + 2y3 + y4]

=
π
4
2

[
0 + 2

(
1√
2
+ 1 +

1√
2

)
+ 0
]

=
π

8

[
1√
2
+ 2 +

2√
2

]
≈ 1.896118898.

The exact value is ∫ pi

0
sin(x) = − cos(x)|π0 = 2.

By composite Simpson Rule:

I =
∫ π

0
sin(x)dx =

h
3
[y0 + 4y1 + 2y2 + 4y3 + y4]

=
π
4
3

[
0 + 4

(
1√
2

)
+ 2(1) + 4

(
1√
2

)
+ 0
]
=

π

12

[
4√
2
+ 2 +

4√
2

]
= 2.004559755.
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Example 6.23. Consider evaluating
∫ 2

0
1

1+x2 dx using composite Simpson method. How
large should n be chosen in order to ensure that

|Ecsm| ≤ 5 × 10−6. (6.11)

Solution: We begin by calculating the derivatives:
f ′(x) = −2x

(1+x2)2 , f ′′(x) = −2+6x2

(1+x2)3 , f ′′′(x) = −24x3+24x
(1+x2)4 ,

and f (iv) = 120x4−240x2+24
(1+x2)5 .

From a graph of f (iv)(x),
max

0≤x≤2

∣∣∣ f (iv)(x)
∣∣∣ = 24.

Therefore
Etr = − (b−a)h4

180 f (iv)(c), hence |Ecsm| ≤ 2h4

180 × (24) = 4h4

15 .
To ensure this, we choose h so small that

4h4

15
≤ 5 × 10−6.

This is equivalent to choosing h and n to satisfy

h ≤ 0.0658 =⇒ n =
3
h
≥ 45.59.

Thus n ≥ 48 will imply (6.11)

Example 6.24. Determine the values of n and h required to approximate
∫ 2

0 e2xdx
within (error≤ 5 × 10−4) using composite Simpson method.

Solution: We begin by calculating the derivatives:
f ′(x) = 2e2x, f ′′(x) = 4e2x, f ′′′(x) = 8e2x.

and f (iv)(x) = 16e2x.
From a graph of f (iv)(x),

max
0≤x≤2

∣∣∣ f (iv)(x)
∣∣∣ = 873.5704.

Therefore
Ecsm = − (b−a)h4

180 f (iv)(c)), hence |Ecsm| ≤ 2h4

180 × (873.5704) = 873.5704h4

90 .
To ensure this, we choose h so small that

873.5704h4

90
≤ 5 × 10−4.

This is equivalent to choosing h and n to satisfy

h ≤ 0.084718576714079 =⇒ n =
3
h
≥ 35.4.

Thus n ≥ 36 will imply the result.
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6.6 EXERCISE

1. Evaluate
∫ 1

0 e−x2
dx, dividing the range into 4 equal part, Using:

i. Trapezoidal Rule, ii. Simpson’s Rule 1/3.

2. Use the Simpson’s rule 1/3 to approximate
∫ 5

1
x√
x+1

dx with n = 8.

3. Determine the step size h required in order for the Simpson’s Rule 1/3 to approxi-
mate the integral

∫ 8
0 x sin(x) dx, with an error of at most 10−4.

4. Find the error bound for
∫ 0.5
−0.5 x ln(x + 2)dx, approximate by the Simpson’s rule

1/3.

5. Evaluate
∫ 0.5

0
x

cos(x)dx with n = 4, use Simpson’s rule 1/3.

6. Evaluate the integral
∫ 2

0 x2 e−x2
dx, and h = 0.25 by using

i. Trapezoidal rule, ii. Simpson’s (1/3) Rule.
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