(a)
$$\Delta \left(\frac{u(x)}{v(x)}\right) = \frac{v(x)\Delta u(x) - u(x)\Delta v(x)}{v(x+h)v(x)}$$
.
(c) $\sum_{i=0}^{n-1} u_i \Delta v_i = u_n v_n - u_0 v_0 - \sum_{i=0}^{n-1} v_{i+1} \Delta u_i$.
(e) $\nabla = \delta E^{-\frac{1}{2}} = 1 - E^{-1} = 1 - (1+D)^{-1}$.
(g) $\Delta (\alpha u_i + \beta v_i) = \alpha \Delta u_i + \beta \Delta v_i$.
(i) $\nabla = 1 - E^{-1}$.
(k) $E\nabla = \nabla E = \Delta$.

(b)
$$\sum_{i=0}^{n-1} \Delta y_i = y_n - y_0.$$

(d) $y_k = \sum_{i=0}^k \binom{k}{i} \Delta^i y_0.$
(f) $\Delta^n f(x_0) = h^n f^{(n)}(x_0).$
(h) $\delta = E^{\frac{1}{2}} - E^{-\frac{1}{2}}.$
(j) $E\Delta = \Delta E$

2. Given the following pairs of values of *x* and *y*

x	1	2	4	8	10
y	0	1	5	21	27

Determine the value y at x = 0.4, use Divided difference interpolation polynomial.

- 3. Use mathematical induction to prove that $f[x_0, x_1, \cdots, x_n] = \frac{\Delta^n f(x_0)}{n!h^n}$.
- 4. Show that: If a function g(x) interpolates the function f(x) at $x_1, x_2, ..., x_{n-1}$, and h(x) interpolates the function f(x) at $x_2, x_3, ..., x_n$, then, $T(x) = g(x) + \frac{(x_1-x)}{(x_n-x_1)}[g(x) - h(x)]$; Interpolate f(x) at $x_1, x_2, ..., x_{n-1}, x_n$.
- 5. If the following values (a, s), (a + h, t), (a + 2h, u) and (a + 3h, v) are obtained from polynomial of degree two. Prove that $f(a + 1.5h) = \frac{(t+u)}{2} + \frac{1}{24} [\frac{3}{2}(t+u-s-v)]$ by using Newton forward difference interpolation formula.
- 6. Use the definition of central difference operator to show that $\Delta^n y_k = \delta^n_{k+\frac{n}{2}}$.
- 7. Use the divided difference method to obtain a polynomial of least degree that fits the following values:

x	1	0	3	-1	5
y	1	-1	8	3	1

8. From the following values:

x	0	0.5	1	1.5	2
y	-1	-2	1	2	3

Find f(0.6) by using Newton forward difference interpolation formula and Bessel interpolation formula.

- 9. If we interpolate the function $f(x) = e^{x-1}$ with a polynomial p of degree 12 using 13 nodes in [-1, 1], what is a good upper bound for |f(x) p(x)| on [-1, 1]?
- 10. Compute a divided difference table for these function values: (3,1), (1,-3), (5,2) and (6,4) and also find f(1.2) and f(5.5) by using divided difference interpolation formula.
- 11. Suppose we know the values of cos(x) at x = -h, x = 0, x = h, (h > 0), write the interpolation polynomial P(x) which interpolates cos(x) at these points. Prove the error bound $|E_n(x)| = |cos(x) P(x)| \le 0.065h^3$, for all $x \in [-h, h]$. Determine h such that the previous interpolation gives 4 exact decimals for any $x \in [-h, h]$.
- 12. Determine the maximum step size that can be used in tabular of $f(x) = e^x$ in [0, 1], so that the error in the linear interpolation will be less than 5×10^{-4} . Find also the step size if quadratic interpolation is used.
- 13. Find the unique polynomial of degree 2 or less such that P(1) = 1, P(3) = 27, and P(4) = 64 by using each of the following methods: (*i*) Lagrange interpolating formula and (*ii*) Divided difference interpolating formula.
- 14. Calculate the n^{th} divided difference of $f(x) = \frac{1}{x}$.
- 15. If f(x) = U(x)V(x), show that $f[x_0, x_1] = U[x_0]V[x_0, x_1] + U[x_0, x_1]V[x_1]$.
- 16. Use the Lagrange interpolation polynomial and Divided difference interpolation formula to estimate f(3) from the following values:

x	0	1	2	3	5	6
f(x)	1	14	15	5	6	19

17. Find $\frac{dy}{dx}$ at x = 0.6 of the function y = f(x) where

x	0.4	0.5	0.6	0.7	0.8
f(x)	1. 5836494	1. 7974426	2 .0442376	2.3275054	2. 6510818

18. Given the following pairs of values of *x* and *y*.

x	1	2	4	8	10
f(x)	0	1	5	21	27

Determine the first derivative at x = 0.4, use divided difference interpolation.

- 19. Find the first and second derivative at *x* = 0.6 for the following data: (0.4, 1.5836), (0.5,1.7974), (0.6,2.0442), (0.7, 2.3275) and (0.8, 2.6511).
- 20. A rod is moving in a plane, the following table given the angle θ in radian through which the rod has turned for various values of t seconds.

t	0	0.2	0.4	0.6	0.8	1	1.2
θ	0	0.12	0.49	1.12	2.02	3.2	4.67

Calculate the angular velocity= $\frac{d\theta}{dt}$ and angular accuracy= $\frac{d^2\theta}{dt^2}$ of the rod, when x = 0.6.

1. Find the linear lest-squares solution for the following table of values:

x	4	7	11	13	17
y	2	0	2	6	7

2. By using the method of least-squares, find the constant function that best fits the following data:

x	-1	2	3
y	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{5}{12}$

- 3. Find an equation of the form $y = ae^{x^2} + bx^3$ that best fits the points (-1, 0), (0, 1) and (1, 2) in the least-squares sense.
- 4. Find the equation of a parabola of form $y = ax^2 + b$ that best represents the following data. Use the method of least squares.

x	-1	0	1
y	3.1	0.9	2.9

5. What straight line best fits the following data

x	1	2	3	4
y	0	1	1	2

in the least-squares sense?

- 6. What constant *c* makes the expression $\sum_{k=0}^{n} [f(x_k) ce^{x_k}]^2$ as small as possible?
- 7. Find an equation of the form $y = (1 + be^{ax})$, $y = ax + bx^2$, $y = ax + \frac{b}{\sqrt{x}}$, $y = ae^{-3x} + be^{-2x}$, $y = \frac{b}{x+a}$, $y = \frac{b}{x(x-a)}$ and y = a + bxy that best fits the points (1,4), (2,6), (3,8) and (4,9) in the least-squares sense.
- 8. Find the power fits $y = Ax^2$, $y = Bx^3$, $y = \frac{C}{x}$ and $y = \frac{D}{x^2}$ for the following data and use the least-squares error to determine which curve fits best.

x	2	2.3	2.6	2.9	3.2
у	3	3.4	3.8	5	5.2