(a) $\Delta\left(\frac{u(x)}{v(x)}\right)=\frac{v(x) \Delta u(x)-u(x) \Delta v(x)}{v(x+h) v(x)}$.
(b) $\sum_{i=0}^{n-1} \Delta y_{i}=y_{n}-y_{0}$.
(c) $\sum_{i=0}^{n-1} u_{i} \Delta v_{i}=u_{n} v_{n}-u_{0} v_{0}-\sum_{i=0}^{n-1} v_{i+1} \Delta u_{i}$.
(d) $y_{k}=\sum_{i=0}^{k}\binom{k}{i} \Delta^{i} y_{0}$.
(e) $\nabla=\delta E^{-\frac{1}{2}}=1-E^{-1}=1-(1+D)^{-1}$.
(f) $\Delta^{n} f\left(x_{0}\right)=h^{n} f^{(n)}\left(x_{0}\right)$.
(g) $\Delta\left(\alpha u_{i}+\beta v_{i}\right)=\alpha \Delta u_{i}+\beta \Delta v_{i}$.
(h) $\delta=E^{\frac{1}{2}}-E^{-\frac{1}{2}}$.
(i) $\nabla=1-E^{-1}$.
(j) $E \Delta=\Delta E$
(k) $E \nabla=\nabla E=\Delta$.
2. Given the following pairs of values of x and y

x	1	2	4	8	10
y	0	1	5	21	27

Determine the value y at $x=0.4$, use Divided difference interpolation polynomial.
3. Use mathematical induction to prove that $f\left[x_{0}, x_{1}, \cdots, x_{n}\right]=\frac{\Delta^{n} f\left(x_{0}\right)}{n!h^{n}}$.
4. Show that: If a function $g(x)$ interpolates the function $f(x)$ at $x_{1}, x_{2}, \ldots, x_{n-1}$, and $h(x)$ interpolates the function $f(x)$ at $x_{2}, x_{3}, \ldots, x_{n}$, then, $T(x)=g(x)+$ $\frac{\left(x_{1}-x\right)}{\left(x_{n}-x_{1}\right)}[g(x)-h(x)]$; Interpolate $f(x)$ at $x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}$.
5. If the following values $(a, s),(a+h, t),(a+2 h, u)$ and $(a+3 h, v)$ are obtained from polynomial of degree two. Prove that $f(a+1.5 h)=\frac{(t+u)}{2}+\frac{1}{24}\left[\frac{3}{2}(t+u-s-v)\right]$ by using Newton forward difference interpolation formula.
6. Use the definition of central difference operator to show that $\Delta^{n} y_{k}=\delta^{n}{ }_{k+\frac{n}{2}}$.
7. Use the divided difference method to obtain a polynomial of least degree that fits the following values:

x	1	0	3	-1	5
y	1	-1	8	3	1

8. From the following values:

x	0	0.5	1	1.5	2
y	-1	-2	1	2	3

Find $f(0.6)$ by using Newton forward difference interpolation formula and Bessel interpolation formula.
9. If we interpolate the function $f(x)=e^{x-1}$ with a polynomial p of degree 12 using 13 nodes in $[-1,1]$, what is a good upper bound for $|f(x)-p(x)|$ on $[-1,1]$?
10. Compute a divided difference table for these function values: $(3,1),(1,-3),(5,2)$ and $(6,4)$ and also find $f(1.2)$ and $f(5.5)$ by using divided difference interpolation formula.
11. Suppose we know the values of $\cos (x)$ at $x=-h, x=0, x=h,(h>0)$, write the interpolation polynomial $P(x)$ which interpolates $\cos (x)$ at these points. Prove the error bound $\left|E_{n}(x)\right|=|\cos (x)-P(x)| \leq 0.065 h^{3}$,for all $x \in[-h, h]$. Determine h such that the previous interpolation gives 4 exact decimals for any $x \in[-h, h]$.
12. Determine the maximum step size that can be used in tabular of $f(x)=e^{x}$ in $[0,1]$, so that the error in the linear interpolation will be less than 5×10^{-4}. Find also the step size if quadratic interpolation is used.
13. Find the unique polynomial of degree 2 or less such that $P(1)=1, P(3)=27$, and $P(4)=64$ by using each of the following methods: (i) Lagrange interpolating formula and (ii) Divided difference interpolating formula.
14. Calculate the $n^{\text {th }}$ divided difference of $f(x)=\frac{1}{x}$.
15. If $f(x)=U(x) V(x)$, show that $f\left[x_{0}, x_{1}\right]=U\left[x_{0}\right] V\left[x_{0}, x_{1}\right]+U\left[x_{0}, x_{1}\right] V\left[x_{1}\right]$.
16. Use the Lagrange interpolation polynomial and Divided difference interpolation formula to estimate $f(3)$ from the following values:

x	0	1	2	3	5	6
$f(x)$	1	14	15	5	6	19

17. Find $\frac{d y}{d x}$ at $x=0.6$ of the function $y=f(x)$ where

x	0.4	0.5	0.6	0.7	0.8
$f(x)$	1.5836494	1.7974426	2.0442376	2.3275054	2.6510818

18. Given the following pairs of values of x and y.

x	1	2	4	8	10
$f(x)$	0	1	5	21	27

Determine the first derivative at $x=0.4$, use divided difference interpolation.
19. Find the first and second derivative at $x=0.6$ for the following data: $(0.4,1.5836)$, $(0.5,1.7974),(0.6,2.0442),(0.7,2.3275)$ and $(0.8,2.6511)$.
20. A rod is moving in a plane, the following table given the angle θ in radian through which the rod has turned for various values of t seconds.

t	0	0.2	0.4	0.6	0.8	1	1.2
θ	0	0.12	0.49	1.12	2.02	3.2	4.67

Calculate the angular velocity $=\frac{d \theta}{d t}$ and angular accuracy $=\frac{d^{2} \theta}{d t^{2}}$ of the rod, when $x=0.6$.

1. Find the linear lest-squares solution for the following table of values:

x	4	7	11	13	17
y	2	0	2	6	7

2. By using the method of least-squares, find the constant function that best fits the following data:

x	-1	2	3
y	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{5}{12}$

3. Find an equation of the form $y=a e^{x^{2}}+b x^{3}$ that best fits the points $(-1,0),(0,1)$ and $(1,2)$ in the least-squares sense.
4. Find the equation of a parabola of form $y=a x^{2}+b$ that best represents the following data. Use the method of least squares.

x	-1	0	1
y	3.1	0.9	2.9

5. What straight line best fits the following data

x	1	2	3	4
y	0	1	1	2

in the least-squares sense?
6. What constant c makes the expression $\sum_{k=0}^{n}\left[f\left(x_{k}\right)-c e^{x_{k}}\right]^{2}$ as small as possible?
7. Find an equation of the form $y=\left(1+b e^{a x}\right), y=a x+b x^{2}, y=a x+\frac{b}{\sqrt{x}}, y=$ $a e^{-3 x}+b e^{-2 x}, y=\frac{b}{x+a}, y=\frac{b}{x(x-a)}$ and $y=a+b x y$ that best fits the points $(1,4)$, $(2,6),(3,8)$ and $(4,9)$ in the least-squares sense.
8. Find the power fits $y=A x^{2}, y=B x^{3}, y=\frac{C}{x}$ and $y=\frac{D}{x^{2}}$ for the following data and use the least-squares error to determine which curve fits best.

x	2	2.3	2.6	2.9	3.2
y	3	3.4	3.8	5	5.2

